youyuge34 / PI-REC
- пятница, 29 марта 2019 г. в 00:18:18
Python
🔥 PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain. 🔥 图像翻译,条件GAN,AI绘画
Progressive Image Reconstruction Network With Edge and Color Domain
When I was a schoolchild,
I dreamed about becoming a painter.
With PI-REC, we make this dream come true.
It is for you, for everyone.
English | 中文版
We propose a universal image reconstruction method to represent detailed images purely from binary sparse edge and flat color domain.
Here is the open source code and the drawing tool.
*The codes of training for release are no completed yet, also waiting for release license of lab.
Find more details in our paper: Paper on arXiv
We strongly recommend you to understand our model architecture before running our drawing tool. Refer to the paper for more details.
1.0 (0.4 is not supported)pip install -r requirements.txtFirstly, follow steps below with patience to prepare pre-trained models:
.7z and put it under your dir ./models/../models/celeba/<xxxxx.pth>自己看上面的咯~
我们提出了一种基于GAN的渐进式训练方法 PI-REC,它能从超稀疏二值边缘以及色块中还原重建真实图像。
这项任务属于图像重建,图像翻译,条件图像生成,AI自动绘画的前沿交叉领域,而非简单的以图搜图。阅读论文中的
Related Work部分可以了解更多相关。
这里包含了测试代码以及交互式绘画工具。
*由于训练过程过于复杂,用于训练的发布版代码还未完成
在我们的论文中你可以获得更多信息(强烈推荐阅读): Paper on arXiv
我们强烈建议你先仔细阅读论文熟悉我们的模型结构,这会对运行使用大有裨益。
1.0 (0.4 会报错)config.yml中的DEVICE)pip install -r requirements.txt首先,请耐心地按照以下步骤做准备:
./models下./models/celeba/<xxxxx.pth>Code structure is modified from Anime-InPainting, which is based on Edge-Connect.
@article{you2019pirec,
title={PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain},
author={You, Sheng and You, Ning and Pan, Minxue},
journal={arXiv preprint arXiv:1903.10146},
year={2019}
}