youngwanLEE / centermask2
- понедельник, 24 февраля 2020 г. в 00:19:20
Python
CenterMask2 on top of detectron2
[CenterMask(original code)][vovnet-detectron2][arxiv] [BibTeX]
CenterMask2 is an upgraded implementation on top of detectron2 beyond original CenterMask based on maskrcnn-benchmark.
We measure the inference time of all models with batch size 1 on the same V100 GPU machine.
| Method | Backbone | lr sched | inference time | mask AP | box AP | download |
|---|---|---|---|---|---|---|
| Mask R-CNN (detectron2) | R-50 | 3x | 0.055 | 37.2 | 41.0 | model | metrics |
| Mask R-CNN (detectron2) | V2-39 | 3x | 0.052 | 39.3 | 43.8 | model | metrics |
| CenterMask (maskrcnn-benchmark) | V2-39 | 3x | 0.070 | 38.5 | 43.5 | link |
| CenterMask2 | V2-39 | 3x | 0.050 | 39.7 | 44.2 | model | metrics |
| Mask R-CNN (detectron2) | R-101 | 3x | 0.070 | 38.6 | 42.9 | model | metrics |
| Mask R-CNN (detectron2) | V2-57 | 3x | 0.058 | 39.7 | 44.2 | model | metrics |
| CenterMask (maskrcnn-benchmark) | V2-57 | 3x | 0.076 | 39.4 | 44.6 | link |
| CenterMask2 | V2-57 | 3x | 0.058 | 40.5 | 45.1 | model | metrics |
| Mask R-CNN (detectron2) | X-101 | 3x | 0.129 | 39.5 | 44.3 | model | metrics |
| Mask R-CNN (detectron2) | V2-99 | 3x | 0.076 | 40.3 | 44.9 | model | metrics |
| CenterMask (maskrcnn-benchmark) | V2-99 | 3x | 0.106 | 40.2 | 45.6 | link |
| CenterMask2 | V2-99 | 3x | 0.077 | 41.4 | 46.0 | model | metrics |
| CenterMask2 (TTA) | V2-99 | 3x | - | 42.5 | 48.6 | model | metrics |
| Method | Backbone | lr sched | inference time | mask AP | box AP | download |
|---|---|---|---|---|---|---|
| YOLACT550 | R-50 | 4x | 0.023 | 28.2 | 30.3 | link |
| CenterMask (maskrcnn-benchmark) | V-19 | 4x | 0.023 | 32.4 | 35.9 | link |
| CenterMask2 | V-19 | 4x | 0.023 | 32.8 | 35.9 | model | metrics |
| YOLACT550 | R-101 | 4x | 0.030 | 28.2 | 30.3 | link |
| YOLACT550++ | R-50 | 4x | 0.029 | 34.1 | - | link |
| YOLACT550++ | R-101 | 4x | 0.036 | 34.6 | - | link |
| CenterMask (maskrcnn-benchmark) | V-39 | 4x | 0.027 | 36.3 | 40.7 | link |
| CenterMask2 | V-39 | 4x | 0.028 | 36.7 | 40.9 | model | metrics |
All you need to use centermask2 is detectron2. It's easy!
you just install detectron2 following INSTALL.md.
Prepare for coco dataset following this instruction.
We provide backbone weights pretrained on ImageNet-1k dataset.
To train a model, run
cd centermask2
python train_net.py --config-file "configs/<config.yaml>"For example, to launch CenterMask training with VoVNetV2-39 backbone on 8 GPUs, one should execute:
cd centermask2
python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 8Model evaluation can be done similarly:
--num-gpus 1--eval-onlyMODEL.WEIGHTS path/to/the/model.pthcd centermask2
wget https://dl.dropbox.com/s/tczecsdxt10uai5/centermask2-V-39-eSE-FPN-ms-3x.pth
python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 1 --eval-only MODEL.WEIGHTS centermask2-V-39-eSE-FPN-ms-3x.pthIf you use VoVNet, please use the following BibTeX entry.
@inproceedings{lee2019energy,
title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection},
author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops},
year = {2019}
}
@article{lee2019centermask,
title={CenterMask: Real-Time Anchor-Free Instance Segmentation},
author={Lee, Youngwan and Park, Jongyoul},
journal={arXiv preprint arXiv:1911.06667},
year={2019}
}mask scoring for detectron2 by Sangrok Lee
FCOS_for_detectron2 by AdeliDet team.