TuSimple / TuSimple-DUC
- пятница, 10 ноября 2017 г. в 03:14:59
Understanding Convolution for Semantic Segmentation
by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell.
This repository is for Understanding Convolution for Semantic Segmentation, which achieved state-of-the-art result on the CityScapes, PASCAL VOC 2012, and Kitti Road benchmark.
We tested our code on:
Ubuntu 16.04, Python 2.7 with
MXNet (0.11.0), numpy(1.13.1), cv2(3.2.0), PIL(4.2.1), and cython(0.25.2)
Clone the repository:
git clone git@github.com:TuSimple/TuSimple-DUC.git
python setup.py develop --user
Download the pretrained model from Google Drive.
Build MXNet (only tested on the TuSimple version):
git clone --recursive git@github.com:TuSimple/mxnet.git
vim make/config.mk
make -j
cd python
python setup.py develop --user
For more MXNet tutorials, please refer to the official documentation.
Training:
cd train
python train_model.py ../configs/train/train_cityscapes.cfg
The paths/dirs in the .cfg
file need to be specified by the user.
Testing
cd test
python predict_full_image.py ../configs/test/test_full_image.cfg
The paths/dirs in the .cfg
file need to be specified by the user.
Results:
Modify the result_dir
path in the config file to save the label map and visualizations. The expected scores are:
(single scale testing denotes as 'ss' and multiple scale testing denotes as 'ms')
If you find the repository is useful for your research, please consider citing:
@article{wang2017understanding,
title={Understanding convolution for semantic segmentation},
author={Wang, Panqu and Chen, Pengfei and Yuan, Ye and Liu, Ding and Huang, Zehua and Hou, Xiaodi and Cottrell, Garrison},
journal={arXiv preprint arXiv:1702.08502},
year={2017}
}
Please contact panqu.wang@tusimple.ai or pengfei.chen@tusimple.ai .