TencentARC / T2I-Adapter
- понедельник, 20 февраля 2023 г. в 00:13:49
T2I-Adapter
Official implementation of T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models.
We propose T2I-Adapter, a simple and small (~70M parameters, ~300M storage space) network that can provide extra guidance to pre-trained text-to-image models while freezing the original large text-to-image models.
T2I-Adapter aligns internal knowledge in T2I models with external control signals. We can train various adapters according to different conditions, and achieve rich control and editing effects.
Put the downloaded models in the T2I-Adapter/models
folder.
sd-v1-4.ckpt
file.anything-v4.0-pruned.ckpt
file.After downloading, the folder structure should be like this:
pip install -r requirements.txt
experiments
folder.Anything v4.0
, please add --ckpt models/anything-v4.0-pruned.ckpt
in the following commands.python test_sketch.py --plms --auto_resume --prompt "A car with flying wings" --path_cond examples/sketch/car.png --ckpt models/sd-v1-4.ckpt --type_in sketch
python test_sketch.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/anything_sketch/human.png --ckpt models/sd-v1-4.ckpt --type_in image
python test_sketch.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/anything_sketch/human.png --ckpt models/anything-v4.0-pruned.ckpt --type_in image
python gradio_sketch.py
python test_keypose.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/keypose/iron.png --type_in pose
python test_keypose.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/sketch/human.png --type_in image
python test_keypose.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/sketch/human.png --ckpt models/anything-v4.0-pruned.ckpt --type_in image
python test_seg.py --plms --auto_resume --prompt "A black Honda motorcycle parked in front of a garage" --path_cond examples/seg/motor.png
python test_seg_sketch.py --plms --auto_resume --prompt "An all white kitchen with an electric stovetop" --path_cond examples/seg_sketch/mask.png --path_cond2 examples/seg_sketch/edge.png
python test_sketch_edit.py --plms --auto_resume --prompt "A white cat" --path_cond examples/edit_cat/edge_2.png --path_x0 examples/edit_cat/im.png --path_mask examples/edit_cat/mask.png
The following is the detailed structure of a Stable Diffusion model with the T2I-Adapter.
The corresponding edge maps are predicted by PiDiNet. The sketch T2I-Adapter can well generalize to other similar sketch types, for example, sketches from the Internet and user scribbles.
The keypose results predicted by the MMPose. With the keypose guidance, the keypose T2I-Adapter can also help to generate animals with the same keypose, for example, pandas and tigers.
Once the T2I-Adapter is trained, it can act as a plug-and-play module and can be seamlessly integrated into the finetuned diffusion models without re-training, for example, Anything-4.0.
When combined with the inpaiting mode of Stable Diffusion, we can realize local editing with user specific guidance.
Adapter can be used to enhance the SD ability to combine different concepts.
We can realize the sequential editing with the adapter guidance.
Stable Diffusion results guided with the segmentation and sketch adapters together.