sony / nnabla
- среда, 28 июня 2017 г. в 03:12:16
NNabla - Neural Network Libraries NNabla is a deep learning framework that is intended to be used for research, development and production. We aim it running everywhere like desktop PCs, HPC clusters, embedded devices and production servers.
NNabla is a deep learning framework that is intended to be used for research, development and production. We aim it running everywhere like desktop PCs, HPC clusters, embedded devices and production servers.
Installing NNabla is easy:
pip install nnabla
This installs the CPU version of NNabla. GPU-acceleration can be added by installing the CUDA extension with pip install nnabla-ext-cuda
.
The Python API built on the NNabla C++11 core gives you flexibility and
productivity. For example, a two layer neural network with classification loss
can be defined in the following 5 lines of codes (hyper parameters are enclosed
by <>
).
import nnabla as nn
import nnabla.functions as F
import nnabla.parametric_functions as PF
x = nn.Variable(<input_shape>)
t = nn.Variable(<target_shape>)
h = F.tanh(PF.affine(x, <hidden_size>, name='affine1'))
y = PF.affine(h, <target_size>, name='affine2')
loss = F.mean(F.softmax_cross_entropy(y, t))
Training can be done by:
import nnabla.solvers as S
# Create a solver (parameter updater)
solver = S.Adam(<solver_params>)
solver.set_parameters(nn.get_parameters())
# Training iteration
for n in range(<num_training_iterations>):
# Setting data from any data source
x.d = <set data>
t.d = <set label>
# Initialize gradients
solver.zero_grad()
# Forward and backward execution
loss.forward()
loss.backward()
# Update parameters by computed gradients
solver.update()
The dynamic computation graph enables flexible runtime network construction. NNabla can use both paradigms of static and dynamic graphs, both using the same API.
x.d = <set data>
t.d = <set label>
drop_depth = np.random.rand(<num_stochastic_layers>) < <layer_drop_ratio>
with nn.auto_forward():
h = F.relu(PF.convolution(x, <hidden_size>, (3, 3), pad=(1, 1), name='conv0'))
for i in range(<num_stochastic_layers>):
if drop_depth[i]:
continue # Stochastically drop a layer
h2 = F.relu(PF.convolution(x, <hidden_size>, (3, 3), pad=(1, 1),
name='conv%d' % (i + 1)))
h = F.add2(h, h2)
y = PF.affine(h, <target_size>, name='classification')
loss = F.mean(F.softmax_cross_entropy(y, t))
# Backward computation (can also be done in dynamically executed graph)
loss.backward()
https://nnabla.readthedocs.org
https://nnabla.readthedocs.io/en/latest/python/installation.html
A number of Jupyter notebook tutorials can be found in the tutorial
folder.
We recommend starting from by_examples.ipynb
for a first
working example in NNabla and python_api.ipynb
for an introduction into the
NNabla API.
We also provide some more sophisticated examples in examples
.