seungwonpark / RandWireNN
- вторник, 9 апреля 2019 г. в 00:17:39
Python
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"
Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition.
Currently, training is in progress.
Validation result on Imagenet(ILSVRC2012) dataset:
| Top 1 accuracy (%) | Paper | Here(WIP) |
|---|---|---|
| RandWire-WS(4, 0.75), C=78 | 74.7 | 56.8 |
lr=0.001, batch_size=128 was used with no learning rate decay.

This code was tested on Python 3.6 with PyTorch 1.0.1. Other packages can be installed by:
pip install -r requirements.txtcd model/graphs
python er.py -p 0.2 -o er-02.txt # Erdos-Renyi
python ba.py -m 7 -o ba-7.txt # Barbasi-Albert
python ws.py -k 4 -p 0.75 ws-4-075.txt # Watts-Strogatz
# number of nodes: -n optionAll outputs from commands shown above will produce txt file like:
(number of nodes)
(number of edges)
(lines, each line representing edges)
config.yamlcd config
cp default.yaml config.yaml
vim config.yaml # specify data directory, graph txt filespython trainer.py -c [config yaml] -m [name]
tensorboard --logdir ./logs
Run full validation:
python validation.py -c [config path] -p [checkpoint path]This will show accuracy and average test loss of the trained model.
Seungwon Park / @seungwonpark
Apache License 2.0