https://github.com/neurreps/awesome-neural-geometry A curated collection of resources and research related to the geometry of representations in the brain, deep networks, and beyond
Symmetry and Geometry in Neural Representations
A curated collection of resources and research related to the geometry of representations in the brain, deep networks, and beyond, collaboratively generated on the Symmetry and Geometry in Neural Representations Slack Workspace.
This is a collaborative work-in-progress. Please contribute via PRs!
Join us on Slack!
Contents
Educational Resources
Differential Geometry + Lie Groups
Textbooks
Courses, Lectures, and Videos
Notebooks and Blogposts
Algebra
Textbooks
Courses, Lectures, and Videos
Topology
Courses, Lectures, and Videos
Geometric Machine Learning
Textbooks
Courses, Lectures, and Videos
Notebooks and Blogposts
Computational Neuroscience
Textbooks
Books - General Audience
Courses, Lectures, and Videos
Datasets
Open-Source Neuroscience Datasets
Software Libraries
Geomstats
Computation, statistics, and machine learning on non-Euclidean manifolds
Giotto TDA
Topological Data Analysis
E3NN
E(3)-equivariant neural networks
equivariant-MLP
Construct equivariant multilayer perceptrons for arbitrary matrix groups
SHTOOLS
Python library for computations involving spherical harmoics
LieConv
Generalizing convolutional neural networks for equivariance to Lie groups on arbitrary continuous data
Open Neuroscience
A database of open-source tools and software for neuroscience
Conferences and Workshops
Research Papers
Math Tags
Neuroscience
Theory and Perspectives
Brain graphs: graphical models of the human brain connectome. (2011) Edward T. Bullmore and Danielle S. Bassett
What can topology tell us about the neural code? (2017) Carina Curto
Network Neuroscience (2017) Danielle S. Bassett, and Olaf Sporns.
Navigating the neural space in search of the neural code. (2017) Jazayeri, M., & Afraz, A.
A theory of multineuronal dimensionality, dynamics and measurement. (2017) Gao, P., Trautmann, E., Yu, B., Santhanam, G., Ryu, S., Shenoy, K., & Ganguli, S.
Computation through neural population dynamics. (2020) Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy
Neural population geometry: An approach for understanding biological and artificial neural networks. (2021) SueYeon Chung, and L. F. Abbott.
Symmetry-based representations for artificial and biological general intelligence (2022) Irina Higgins, Sébastien Racanière, Danilo Rezende.
Vision
The Lie algebra of visual perception (1966) William C.Hoffman
Representation of local geometry in the visual system (1987) Jan Koenderink
Operational Significance of Receptive Fields Assemblies (1989) Jan Koenderink
The Visual Cortex is a Contact Bundle (1989) William C. Hoffman
Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex (2001) Paul C. Bressloff, Jack D. Cowan, Martin Golubitsky, Peter J. Thomas and Matthew C. Wiener
The neurogeometry of pinwheels as a sub-Riemannian contact structure (2003) Jean Petitot
Untangling invariant object recognition. (2007) James DiCarlo and David Cox
Parsimony, Exhaustivity and Balanced Detection in Neocortex (2015) Alberto Romagnoni, Jérôme Ribot, Daniel Bennequin, Jonathan Touboul
High-dimensional geometry of population responses in visual cortex. (2019) Stringer, Carsen, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, and Kenneth D. Harris.
Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. (2019) Carlos R. Ponce, Will Xiao, Peter F. Schade, Till S. Hartmann, Gabriel Kreiman, and Margaret S. Livingstone.
Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning (2021) Fernanda L. Ribeiro, Steffen Bollmann, Alexander M. Puckett
Primary visual cortex straightens natural video trajectories (2021) Olivier J. Hénaff, Yoon Bai, Julie A. Charlton, Ian Nauhaus, Eero P. Simoncelli & Robbe L. T. Goris
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons. (2021) Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M.
Motor Control
Spatial Navigation
Abstract Representations
Methods
Clique topology reveals intrinsic geometric structure in neural correlations. (2015) Chad Giusti, Eva Pastalkova, Carina Curto, and Vladimir Itskov
Two’s company, three (or more) is a simplex. (2016) Chad Giusti, Robert Ghrist, and Danielle S. Bassett.
Inferring single-trial neural population dynamics using sequential auto-encoders. (2018) Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., ... & Sussillo, D.
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data (2020) Kristopher Jensen, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin
Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity (2021) Mehrdad Jazayeri, Srdjan Ostojic
Generalized shape metrics on neural representations. (2021) Williams, A. H., Kunz, E., Kornblith, S., & Linderman, S.
Geometric Machine Learning
Theory
Estimation on Manifolds
Dimensionality Reduction and Disentangling
Deep Network Interpretability
Group-Invariant and -Equivariant Representation Learning
How we know universals (1947) Walter Pitts & Warren S. McCulloch
Learning Symmetry Groups with Hidden Units: Beyond the Perceptron (1986) Terrence Sejnowski, Paul K. Kienker, Geoffrey Hinton
Learning Lie groups for invariant visual perception (1999) Rajesh Rao, Daniel Ruderman
Learning the Lie groups of visual invariance (2007) Xu Miao, Rajesh Rao
An unsupervised algorithm for learning Lie group transformations. (2010) Jascha Sohl-Dickstein, Ching Ming Wang, Bruno Olshausen
Learning the irreducible representations of commutative Lie groups (2014) Taco Cohen & Max Welling
Group equivariant convolutional networks (2016) Taco Cohen & Max Welling
Harmonic Networks (2017) Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow.
Spherical CNNs (2018) Taco Cohen, Mario Geiger, Jonas Kohler, & Max Welling
Clebsch–gordan nets: a fully fourier space spherical convolutional neural network (2018) Risi Kondor, Zhen Lin, Shubhendu Trivedi
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds (2018) Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley
A General Theory of Equivariant CNNs on Homogeneous Spaces (2019) Taco Cohen, Mario Geiger, & Maurice Weiler
Generalizing convolutional neural networks for equivariance to Lie groups on arbitrary continuous data (2020) Marc Finzi, Samuel Stanton, Pavel Izmailov, Andrew Gordon Wilson
Bispectral neural networks (2022) Sophia Sanborn, Christian Shewmake, Bruno Olshausen, Christopher Hillar