JoePenna / Dreambooth-Stable-Diffusion
- четверг, 27 октября 2022 г. в 00:33:15
Implementation of Dreambooth ( https://arxiv.org/abs/2208.12242 ) by way of Textual Inversion ( https://arxiv.org/abs/2208.01618 ) for Stable Diffusion ( https://arxiv.org/abs/2112.10752 ). Tweaks focused on training faces, objects, and styles.
Hi! My name is Joe Penna.
You might have seen a few YouTube videos of mine under MysteryGuitarMan. I'm now a feature film director. You might have seen ARCTIC or STOWAWAY.
For my movies, I need to be able to train specific actors, props, locations, etc. So, I did a bunch of changes to @XavierXiao's repo in order to train people's faces.
I can't release all the tests for the movie I'm working on, but when I test with my own face, I release those on my Twitter page - @MysteryGuitarM.
Lots of these tests were done with a buddy of mine -- Niko from CorridorDigital. It might be how you found this repo!
I'm not really a coder. I'm just stubborn, and I'm not afraid of googling. So, eventually, some really smart folks joined in and have been contributing. In this repo, specifically: @djbielejeski @gammagec @MrSaad –– but so many others in our Discord!
This is no longer my repo. This is the people-who-wanna-see-Dreambooth-on-SD-working-well's repo!
Now, if you wanna try to do this... please read the warnings below first:
This is bleeding edge stuff... there is currently no easy way to run this. This repo is based on a repo based on another repo.
Unfreezing the model takes a lot of juice.
This implementation does not fully implement Google's ideas on how to preserve the latent space.
There doesn't seem to be an easy way to train two subjects consecutively. You will end up with an 11-12GB
file before pruning.
~2gb
Best practice is to change the token to a celebrity name (note: token, not class -- so your prompt would be something like: Chris Evans person
). Here's my wife trained with the exact same settings, except for the token
SECURE CLOUD
or COMMUNITY CLOUD
Rent
, then head over to your Instances page and click Open
Notebook -> Python 3
(You can do this next step a number of ways, but I typically do this)
Dreambooth-Stable-Diffusion
directory on the left and open the dreambooth_runpod_joepenna.ipynb
file
The majority of the code in this repo was written by Rinon Gal et. al, the authors of the Textual Inversion research paper. Though a few ideas about regularization images and prior loss preservation (ideas from "Dreambooth") were added in, out of respect to both the MIT team and the Google researchers, I'm renaming this fork to: "The Repo Formerly Known As "Dreambooth"".
For an alternate implementation , please see "Alternate Option" below.
The ground truth
(real picture, caution: very beautiful woman)
Same prompt for all of these images below:
sks person |
woman person |
Natalie Portman person |
Kate Mara person |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Prompting with just your token. ie "joepenna" instead of "joepenna person"
If you trained with joepenna
under the class person
, the model should only know your face as:
joepenna person
Example Prompts:
person
following joepenna
)
portrait photograph of joepenna 35mm film vintage glass
person
is included after joepenna
)
portrait photograph of joepenna person 35mm film vintage glass
You might sometimes get someone who kinda looks like you with joepenna (especially if you trained for too many steps), but that's only because this current iteration of Dreambooth overtrains that token so much that it bleeds into that token.
While training, Stable doesn't know that you're a person. It's just going to mimic what it sees.
So, if these are your training images look like this:
You're only going to get generations of you outside next to a spiky tree, wearing a white-and-gray shirt, in the style of... well, selfie photograph.
Instead, this training set is much better:
The only thing that is consistent between images is the subject. So, Stable will look through the images and learn only your face, which will make "editing" it into other styles possible.
Are you sure you're prompting it right?
It should be <token> <class>
, not just <token>
. For example:
JoePenna person, portrait photograph, 85mm medium format photo
If it still doesn't look like you, you didn't train long enough.
Okay, a few reasons why: you might have trained too long... or your images were too similar... or you didn't train with enough images.
No problem. We can fix that with the prompt. Stable Diffusion puts a LOT of merit to whatever you type first. So save it for later:
an exquisite portrait photograph, 85mm medium format photo of JoePenna person with a classic haircut
You didn't train long enough...
No problem. We can fix that with the prompt:
JoePenna person in a portrait photograph, JoePenna person in a 85mm medium format photo of JoePenna person
Dreambooth is now supported in HuggingFace Diffusers for training with Stable Diffusion.
Try it out here: