hustvl / YOLOP
- воскресенье, 29 августа 2021 г. в 00:32:54
You Only Look Once for Panopitic Driving Perception.( https://arxiv.org/abs/2108.11250 )
You Only Look at Once for Panoptic driving Perception
by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang
📧 School of EIC, HUST(
📧 ) corresponding author.arXiv technical report (arXiv 2108.11250)
We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the BDD100K
dataset.
We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.
Model | Recall(%) | mAP50(%) | Speed(fps) |
---|---|---|---|
Multinet |
81.3 | 60.2 | 8.6 |
DLT-Net |
89.4 | 68.4 | 9.3 |
Faster R-CNN |
77.2 | 55.6 | 5.3 |
YOLOv5s |
86.8 | 77.2 | 82 |
YOLOP(ours) |
89.2 | 76.5 | 41 |
Model | mIOU(%) | Speed(fps) |
---|---|---|
Multinet |
71.6 | 8.6 |
DLT-Net |
71.3 | 9.3 |
PSPNet |
89.6 | 11.1 |
YOLOP(ours) |
91.5 | 41 |
Model | mIOU(%) | IOU(%) |
---|---|---|
ENet |
34.12 | 14.64 |
SCNN |
35.79 | 15.84 |
ENet-SAD |
36.56 | 16.02 |
YOLOP(ours) |
70.50 | 26.20 |
Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) |
---|---|---|---|---|---|
ES-W |
87.0 | 75.3 | 90.4 | 66.8 | 26.2 |
ED-W |
87.3 | 76.0 | 91.6 | 71.2 | 26.1 |
ES-D-W |
87.0 | 75.1 | 91.7 | 68.6 | 27.0 |
ED-S-W |
87.5 | 76.1 | 91.6 | 68.0 | 26.8 |
End-to-end |
89.2 | 76.5 | 91.5 | 70.5 | 26.2 |
Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | Speed(ms/frame) |
---|---|---|---|---|---|---|
Det(only) |
88.2 | 76.9 | - | - | - | 15.7 |
Da-Seg(only) |
- | - | 92.0 | - | - | 14.8 |
Ll-Seg(only) |
- | - | - | 79.6 | 27.9 | 14.8 |
Multitask |
89.2 | 76.5 | 91.5 | 70.5 | 26.2 | 24.4 |
Notes:
Multinet
(paper,code),DLT-Net
(paper),Faster R-CNN
(paper,code),YOLOv5s
(code) ,PSPNet
(paper,code) ,ENet
(paper,code) SCNN
(paper,code) SAD-ENet
(paper,code). Thanks for their wonderful works.Notes:
├─inference
│ ├─images # inference images
│ ├─output # inference result
├─lib
│ ├─config/default # configuration of training and validation
│ ├─core
│ │ ├─activations.py # activation function
│ │ ├─evaluate.py # calculation of metric
│ │ ├─function.py # training and validation of model
│ │ ├─general.py #calculation of metric、nms、conversion of data-format、visualization
│ │ ├─loss.py # loss function
│ │ ├─postprocess.py # postprocess(refine da-seg and ll-seg, unrelated to paper)
│ ├─dataset
│ │ ├─AutoDriveDataset.py # Superclass dataset,general function
│ │ ├─bdd.py # Subclass dataset,specific function
│ │ ├─hust.py # Subclass dataset(Campus scene, unrelated to paper)
│ │ ├─convect.py
│ │ ├─DemoDataset.py # demo dataset(image, video and stream)
│ ├─models
│ │ ├─YOLOP.py # Setup and Configuration of model
│ │ ├─light.py # Model lightweight(unrelated to paper, zwt)
│ │ ├─commom.py # calculation module
│ ├─utils
│ │ ├─augmentations.py # data augumentation
│ │ ├─autoanchor.py # auto anchor(k-means)
│ │ ├─split_dataset.py # (Campus scene, unrelated to paper)
│ │ ├─utils.py # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training
│ ├─run
│ │ ├─dataset/training time # Visualization, logging and model_save
├─tools
│ │ ├─demo.py # demo(folder、camera)
│ │ ├─test.py
│ │ ├─train.py
├─toolkits
│ │ ├─depoly # Deployment of model
│ │ ├─label_conversion
├─weights # Pretraining model
This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
See requirements.txt
for additional dependencies and version requirements.
pip install -r requirements.txt
Download BDD100k dataset
from link, and convert the label into the form of training requirements.
.jpg
corresponds to one .json
).jpg
corresponds to one .png
).jpg
corresponds to one .png
)We provide the code for conversion of label in ./toolkits/label_conversion
. We recommend the directory structure to be the following:
# The id represent the correspondence relation
├─dataset root
│ ├─images/ id.jpg
│ ├─det_annotations/ id.json
│ ├─da_seg_annotations/ id.png
│ ├─ll_seg_annotations/ id.png
Update the your dataset path in the ./lib/config/default.py
.
You can set the training configuration in the ./lib/config/default.py
. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size).
If you want try alternating optimization or train model for single task, please modify the corresponding configuration in ./lib/config/default.py
to True
. (As following, all configurations is False
, which means training multiple tasks end to end).
# Alternating optimization
_C.TRAIN.SEG_ONLY = False # Only train two segmentation branchs
_C.TRAIN.DET_ONLY = False # Only train detection branch
_C.TRAIN.ENC_SEG_ONLY = False # Only train encoder and two segmentation branchs
_C.TRAIN.ENC_DET_ONLY = False # Only train encoder and detection branch
# Single task
_C.TRAIN.DRIVABLE_ONLY = False # Only train da_segmentation task
_C.TRAIN.LANE_ONLY = False # Only train ll_segmentation task
_C.TRAIN.DET_ONLY = False # Only train detection task
Start training:
python tools/train.py
You can set the evaluation configuration in the ./lib/config/default.py
. (Including: batch_size and threshold value for nms).
Start evaluating:
python tools/test.py --weights weights/End-to-end.pth
We provide two testing method.
You can store the image or video in --source
, and then save the reasoning result to --save-dir
python tools/demo --source inference/images
If there are any camera connected to your computer, you can set the source
as the camera number(The default is 0).
python tools/demo --source 0
input | output |
---|---|
![]() |
![]() |
![]() |
![]() |
Our model can reason in real-time on Jetson Tx2
, with Zed Camera
to capture image. We use TensorRT
tool for speeding up. We provide code for deployment and reasoning of model in ./tools/deploy
.
If you find our paper and code useful for your research, please consider giving a star
@misc{2108.11250,
Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang},
Title = {YOLOP: You Only Look Once for Panoptic Driving Perception},
Year = {2021},
Eprint = {arXiv:2108.11250},
}