HazyResearch / flash-attention
- пятница, 3 июня 2022 г. в 00:31:52
This repository provides the official implementation of FlashAttention from the following paper.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2205.14135
To compile (requiring CUDA 11, NVCC, and an Ampere GPU):
python setup.py install
Interface: src/flash_attention.py
To run the benchmark against PyTorch standard attention:
PYTHONPATH=$PWD python benchmarks/benchmark_flash_attention.py
FlashAttention currently supports:
Our tentative roadmap:
We present expected speedup (combined forward + backward pass) and memory savings from using FlashAttention against PyTorch standard attention, depending on sequence length, on different GPUs (speedup depends on memory bandwidth - we see more speedup on slower GPU memory).
We display FlashAttention speedup using these parameters (similar to BERT-base):
Our graphs show sequence lengths between 128 and 4096 (when standard attention runs out of memory on an A100), but FlashAttention can scale up to sequence length 64K.
We generally see 2-4X speedup at sequence lengths between 128 and 4K, and we see more speedup when using dropout and masking, since we fuse the kernels. At sequence lengths that are popular with language models like 512 and 1K, we see speedups up to 4X when using dropout and masking.
We show memory savings in this graph (note that memory footprint is the same no matter if you use dropout or masking). Memory savings are proportional to sequence length -- since standard attention has memory quadratic in sequence length, whereas FlashAttention has memory linear in sequence length. We see 10X memory savings at sequence length 2K, and 20X at 4K. As a result, FlashAttention can scale to much longer sequence lengths.
For the RTX 3090, we use batch size 12 with 12 attention heads. Memory savings are the same as on an A100, so we'll only show speedup here.
We see slightly higher speedups (between 2.5-4.5x) on the GTX 3090, since memory bandwidth on the GDDR6X is lower than A100 HBM (~900 GB/s vs. ~1.5 TB/s).
Our implementation uses Apex's FMHA code as a starting point.
We thank Young-Jun Ko for the in-depth explanation of his FMHA implementation and for his thoughtful answers to our questions about CUDA.
If you use this codebase, or otherwise found our work valuable, please cite:
@article{dao2022flashattention,
title={FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness},
author={Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher},
journal={arXiv preprint arXiv:2205.14135},
year={2022}
}