galeone / tfgo
- суббота, 1 июля 2017 г. в 03:12:32
Tensorflow + Go, the gopher way
Tensorflow's Go bindings are hard to use: tfgo makes it easy!
No more problems like:
Also, it uses Method chaining making possible to write pleasant Go code.
Prerequisite: https://www.tensorflow.org/versions/master/install/install_go
The core data structure of the Tensorflow's Go bindings is the op.Scope
struct. tfgo allows creating new *op.Scope
that solves the scoping issue mentioned above.
Since we're defining a graph, let's start from its root (empty graph)
root := tfgo.NewRoot()
We can now place nodes into this graphs and connect them. Let's say we want to multiply a matrix for a column vector and then add another column vector to the result.
Here's the complete source code.
package main
import (
"fmt"
"github.com/galeone/tfgo"
tf "github.com/tensorflow/tensorflow/tensorflow/go"
)
func main() {
root := tfgo.NewRoot()
A := tfgo.NewTensor(root, tfgo.Const(root, [2][2]int32{{1, 2}, {-1, -2}}))
x := tfgo.NewTensor(root, tfgo.Const(root, [2][1]int64{{10}, {100}}))
b := tfgo.NewTensor(root, tfgo.Const(root, [2][1]int32{{-10}, {10}}))
Y := A.MatMul(x.Output).Add(b.Output)
// Please note that Y is just a pointer to A!
// If we want to create a different node in the graph, we have to clone Y
// or equivalently A
Z := A.Clone()
results := tfgo.Exec(root, []tf.Output{Y.Output, Z.Output}, nil, &tf.SessionOptions{})
fmt.Println("Y: ", results[0].Value(), "Z: ", results[1].Value())
fmt.Println("Y == A", Y == A) // ==> true
fmt.Println("Z == A", Z == A) // ==> false
}
that produces
Y: [[200] [-200]] Z: [[200] [-200]]
Y == A true
Z == A false
The list of the available methods is available on GoDoc: http://godoc.org/github.com/galeone/tfgo
Tensorflow is rich of methods for performing operations on images. tfgo provides the image
package that allows using the Go bindings to perform computer vision tasks in a elegant way.
For instance, it's possible to read an image, compute its directional derivative along the horizontal and vertical directions, compute the gradient and save it.
The code below does that, showing the different results achieved using correlation and convolution operations.
package main
import (
"github.com/galeone/tfgo"
"github.com/galeone/tfgo/image"
"github.com/galeone/tfgo/image/filter"
"github.com/galeone/tfgo/image/padding"
tf "github.com/tensorflow/tensorflow/tensorflow/go"
"os"
)
func main() {
root := tfgo.NewRoot()
grayImg := image.Read(root, "/home/pgaleone/test_sobel.PNG", 1)
grayImg = grayImg.Scale(0, 255)
// Edge detection using sobel filter: convolution
Gx := grayImg.Convolve(filter.SobelX(root), image.Stride{X: 1, Y: 1}, padding.SAME).Clone()
Gy := grayImg.Convolve(filter.SobelY(root), image.Stride{X: 1, Y: 1}, padding.SAME).Clone()
convoluteEdges := image.NewImage(root.SubScope("edge"), Gx.Square().Add(Gy.Square().Value()).Sqrt().Value()).EncodeJPEG()
Gx = grayImg.Correlate(filter.SobelX(root), image.Stride{X: 1, Y: 1}, padding.SAME).Clone()
Gy = grayImg.Correlate(filter.SobelY(root), image.Stride{X: 1, Y: 1}, padding.SAME).Clone()
correlateEdges := image.NewImage(root.SubScope("edge"), Gx.Square().Add(Gy.Square().Value()).Sqrt().Value()).EncodeJPEG()
results := tfgo.Exec(root, []tf.Output{convoluteEdges, correlateEdges}, nil, &tf.SessionOptions{})
file, _ := os.Create("convolve.png")
file.WriteString(results[0].Value().(string))
file.Close()
file, _ = os.Create("correlated.png")
file.WriteString(results[1].Value().(string))
file.Close()
}
airplane.png
correlated.jpg
convolved.jpg
the list of the available methods is available on GoDoc: http://godoc.org/github.com/galeone/tfgo/image
Thinking about computation represented using graphs, describing computing in this way is, in one word, challenging.
Also, tfgo brings GPU computations to Go and allows writing parallel code without worrying about the device that executes it (just place the graph into the device you desire: that's it!)
I love contributions. Seriously. Having people that share your same interests and want to face your same challenges it's something awsome.
If you'd like to contribute, just dig in the code and see what can be added or improved. Start a dicussion opening an issue and let's talk about it.
Just follow the same design I use into the image
package ("override" the same Tensor
methods, document the methods, test your changes, ...)
There are a lot of packages that can be added, like the image
package. Feel free to work on a brand new package: I'd love to see this kind of contribution!