facebookresearch / ClassyVision
- понедельник, 9 декабря 2019 г. в 00:24:18
Jupyter Notebook
An end-to-end PyTorch framework for image and video classification
Classy Vision is a new end-to-end, PyTorch-based framework for large-scale training of state-of-the-art image and video classification models. Previous computer vision (CV) libraries have been focused on providing components for users to build their own frameworks for their research. While this approach offers flexibility for researchers, in production settings it leads to duplicative efforts, and requires users to migrate research between frameworks and to relearn the minutiae of efficient distributed training and data loading. Our PyTorch-based CV framework offers a better solution for training at scale and for deploying to production. It offers several notable advantages:
Classy Vision is beta software. The project is under active development and our APIs are subject to change in future releases.
Make sure you have an up-to-date installation of PyTorch (1.3.1), Python (3.6) and torchvision (1.4). If you want to use GPUs, then a CUDA installation (10.1) is also required.
To install Classy Vision:
pip install classy_visionAlternatively you can do a manual install.
git clone https://github.com/facebookresearch/ClassyVision.git
cd ClassyVision
pip install .Classy Vision aims to support a variety of projects to be built and open sourced on top of the core library. We provide utilities for setting up a project in a standard format with some simple generated examples to get started with. To start a new project:
classy-project my-project
cd my-projectWe even include a simple, synthetic, training example to show how to use Classy Vision:
./classy_train.py --config configs/template_config.jsonVoila! A few seconds later your first training run using our classification task should be done. Check out the results in the output folder:
ls output_<timestamp>/checkpoints/
checkpoint.torch model_phase-0_end.torch model_phase-1_end.torch model_phase-2_end.torch model_phase-3_end.torchcheckpoint.torch is the latest model (in this case, same as model_phase-3_end.torch), a checkpoint is saved at the end of each phase.
For more details / tutorials see the documentation section below.
Please see our tutorials to learn how to get started on Classy Vision and customize your training runs. Full documentation is available here.
See the CONTRIBUTING file for how to help out.
Classy Vision is MIT licensed, as found in the LICENSE file.
If you use Classy Vision in your work, please use the following BibTeX entry:
@article{adcock2019classy,
title={Classy Vision},
author={{Adcock}, A. and {Reis}, V. and {Singh}, M. and {Yan}, Z. and {van der Maaten} L., and {Zhang}, K. and {Motwani}, S. and {Guerin}, J. and {Goyal}, N. and {Misra}, I. and {Gustafson}, L. and {Changhan}, C. and {Goyal}, P.},
howpublished = {\url{https://github.com/facebookresearch/ClassyVision}},
year={2019}
}