coqui-ai / TTS
- суббота, 17 апреля 2021 г. в 00:32:44
🐸 💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production
👩🏽🍳 TTS training recipes
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly, so that more people can benefit from it.
Type | Platforms |
---|---|
GitHub Issue Tracker | |
TTS/Wiki | |
GitHub Issue Tracker | |
Github Discussions | |
Github Discussions or Gitter Room or Matrix Room |
Type | Links |
---|---|
TTS/README.md | |
CONTRIBUTING.md | |
👩🏾🏫 Tutorials and Examples | TTS/Wiki |
TTS Releases and Experimental Models | |
Repository by @synesthesiam | |
TTS/server | |
TTS/README.md |
Underlined "TTS*" and "Judy*" are
dataset_analysis
.You can also help us implement more models. Some
If you are only interested in synthesizing speech with the released
pip install TTS
If you plan to code or train models, clone
git clone https://github.com/coqui-ai/TTS
pip install -e .
We use espeak-ng
to convert graphemes to phonemes. You might need to install separately.
sudo apt-get install espeak-ng
If you are on Ubuntu (Debian), you can also run following commands for installation.
$ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a diffent OS.
$ make install
If you are on Windows,
|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
|- utils/ (common utilities.)
|- TTS
|- bin/ (folder for all the executables.)
|- train*.py (train your target model.)
|- distribute.py (train your TTS model using Multiple GPUs.)
|- compute_statistics.py (compute dataset statistics for normalization.)
|- convert*.py (convert target torch model to TF.)
|- tts/ (text to speech models)
|- layers/ (model layer definitions)
|- models/ (model definitions)
|- tf/ (Tensorflow 2 utilities and model implementations)
|- utils/ (model specific utilities.)
|- speaker_encoder/ (Speaker Encoder models.)
|- (same)
|- vocoder/ (Vocoder models.)
|- (same)
Below you see Tacotron model state after 16K iterations with batch-size 32 with LJSpeech dataset.
"Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning."
Audio examples: soundcloud
datasets/preprocess.py
to see some examples.
After that, you need to set dataset
fields in config.json
.
Some of the public datasets that we successfully applied
After the installation,
Listing released
tts --list_models
Run a tts and a vocoder model from the released model list. (Simply copy and paste the full model names from the list as arguments for the command below.)
tts --text "Text for TTS" \
--model_name "<type>/<language>/<dataset>/<model_name>" \
--vocoder_name "<type>/<language>/<dataset>/<model_name>" \
--out_path folder/to/save/output.wav
Run your own TTS model (Using Griffin-Lim Vocoder)
tts --text "Text for TTS" \
--model_path path/to/model.pth.tar \
--config_path path/to/config.json \
--out_path folder/to/save/output.wav
Run your own TTS and Vocoder models
tts --text "Text for TTS" \
--config_path path/to/config.json \
--model_path path/to/model.pth.tar \
--out_path folder/to/save/output.wav \
--vocoder_path path/to/vocoder.pth.tar \
--vocoder_config_path path/to/vocoder_config.json
Note: You can use ./TTS/bin/synthesize.py
if you prefer running tts
from the TTS project folder.
Here you can find a CoLab notebook for a hands-on example, training LJSpeech. Or you can manually follow the guideline below.
To start with, split metadata.csv
into train and validation subsets respectively metadata_train.csv
and metadata_val.csv
. Note that for text-to-speech, validation performance might be misleading since the loss value does not directly measure the voice quality to the human ear and it also does not measure the attention module performance. Therefore, running the model with new sentences and listening to the results is the best way to go.
shuf metadata.csv > metadata_shuf.csv
head -n 12000 metadata_shuf.csv > metadata_train.csv
tail -n 1100 metadata_shuf.csv > metadata_val.csv
To train a new model, you need to define your own config.json
to define model details, trainin configuration and more (check the examples). Then call the corressponding train script.
For instance, in order to train a tacotron or tacotron2 model on LJSpeech dataset, follow these steps.
python TTS/bin/train_tacotron.py --config_path TTS/tts/configs/config.json
To fine-tune a model, use --restore_path
.
python TTS/bin/train_tacotron.py --config_path TTS/tts/configs/config.json --restore_path /path/to/your/model.pth.tar
To continue an old training run, use --continue_path
.
python TTS/bin/train_tacotron.py --continue_path /path/to/your/run_folder/
For multi-GPU training, call distribute.py
. It runs any provided train script in multi-GPU setting.
CUDA_VISIBLE_DEVICES="0,1,4" python TTS/bin/distribute.py --script train_tacotron.py --config_path TTS/tts/configs/config.json
Each run creates a new output folder accomodating used config.json
, model checkpoints and tensorboard logs.
In case of any error or intercepted execution, if there is no checkpoint yet under the output folder, the whole folder is going to be removed.
You can also enjoy Tensorboard, if you point Tensorboard argument--logdir
to the experiment folder.