chenjiandongx / pyecharts
- вторник, 25 июля 2017 г. в 03:12:55
Python Echarts Potting Library
pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。
Echarts 是百度开源的一个数据可视化 JS 库。看了官方的介绍文档,觉得很不错,就想看看有没有人实现了 Python 库可以直接调用的。Github 上找到了一个 echarts-python 不过这个项目已经很久没更新且也没什么介绍文档。借鉴了该项目,就自己动手实现一个,于是就有了 pyecharts。API 接口是从另外一个图表库 pygal 中模仿的。
pyecharts 兼容 Python2 和 Python3。当前版本为 0.1.6,关于版本信息请查看 changelog.md
pip install pyecharts
首先开始来绘制你的第一个图表
from pyecharts import Bar
bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.show_config()
bar.render()
Tip: 可以按右边的下载按钮将图片下载到本地
add()
show_config()
render()
基本上所有的图表类型都是这样绘制的:
chart_name = Type()
初始化具体类型图表。add()
添加数据及配置项。render()
生成 .html 文件。add()
数据一般为两个列表(长度一致),如果你的数据是字典或者是带元组的字典。可利用 cast()
方法转换。
@staticmethod
cast(seq)
``` 转换数据序列,将带字典和元组类型的序列转换为 k_lst,v_lst 两个列表 ```
图表类初始化所接受的参数(所有类型的图表都一样)。
通用配置项均在 add()
中设置
xyAxis:直角坐标系中的 x、y 轴(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline)
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
Tip: is_random 可随机打乱图例颜色列表,算是切换风格?
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小。
Bar.add() 方法签名
add(name, x_axis, y_axis, is_stack=False, **kwargs)
from pyecharts import Bar
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图数据堆叠示例")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True)
bar.render()
Tip: 全局配置项要在最后一个 add()
上设置,否侧设置会被冲刷掉。
from pyecharts import Bar
bar = Bar("标记线和标记点示例")
bar.add("商家A", attr, v1, mark_point=["average"])
bar.add("商家B", attr, v2, mark_line=["min", "max"])
bar.render()
from pyecharts import Bar
bar = Bar("x 轴和 y 轴交换")
bar.add("商家A", attr, v1)
bar.add("商家B", attr, v2, is_convert=True)
bar.render()
dataZoom 效果,'slider' 类型
import random
attr = ["{}天".format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar("Bar - datazoom - slider 示例")
bar.add("", attr, v1, is_label_show=True, is_datazoom_show=True)
bar.show_config()
bar.render()
'inside' 类型
attr = ["{}天".format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar("Bar - datazoom - inside 示例")
bar.add("", attr, v1, is_datazoom_show=True, datazoom_type='inside', datazoom_range=[10, 25])
bar.show_config()
bar.render()
Tip: datazoom 适合所有平面直角坐标系图形,也就是(Line、Bar、Scatter、EffectScatter、Kline)
Tip: 可以通过 label_color 来设置柱状的颜色,如 ['#eee', '#000'],所有的图表类型的图例颜色都可通过 label_color 来修改。
利用动画特效可以将某些想要突出的数据进行视觉突出。
EffectScatter.add() 方法签名
add(name, x_value, y_value, symbol_size=10, **kwargs)
from pyecharts import EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [25, 20, 15, 10, 60, 33]
es = EffectScatter("动态散点图示例")
es.add("effectScatter", v1, v2)
es.render()
es = EffectScatter("动态散点图各种图形示例")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render()
Funnel.add() 方法签名
add(self, name, attr, value, **kwargs)
from pyecharts import Funnel
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
funnel = Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel.render()
funnel = Funnel("漏斗图示例", width=600, height=400, title_pos='center')
funnel.add("商品", attr, value, is_label_show=True, label_pos="outside", legend_orient='vertical',
legend_pos='left')
funnel.show_config()
funnel.render()
Gauge.add() 方法签名
add(name, attr, value, scale_range=None, angle_range=None, **kwargs)
from pyecharts import Gauge
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 166.66, angle_range=[180, 0], scale_range=[0, 200], is_legend_show=False)
gauge.show_config()
gauge.render()
地理坐标系组件用于地图的绘制,支持在地理坐标系上绘制散点图,线集。
Geo.add() 方法签名
add(name, attr, value, type="scatter", maptype='china', symbol_size=12, border_color="#111",
geo_normal_color="#323c48", geo_emphasis_color="#2a333d", **kwargs)
Scatter 类型
from pyecharts import Geo
data = [
("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25),
("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("厦门", 26),
("汕尾", 26),("潮州", 26),("丹东", 27),("太仓", 27),("曲靖", 27),("烟台", 28),
("福州", 29),("瓦房店", 30),("即墨", 30),("抚顺", 31),("玉溪", 31),("张家口", 31),
("阳泉", 31),("莱州", 32),("湖州", 32),("汕头", 32),("昆山", 33),("宁波", 33),
("湛江", 33),("揭阳", 34),("荣成", 34),("连云港", 35),("葫芦岛", 35),("常熟", 36),
("东莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南宁", 37),("营口", 37),
("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38),
("延安", 38),("太原", 39),("清远", 39),("中山", 39),("昆明", 39),("寿光", 40),
("盘锦", 40),("长治", 41),("深圳", 41),("珠海", 42),("宿迁", 43),("咸阳", 43),
("铜川", 44),("平度", 44),("佛山", 44),("海口", 44),("江门", 45),("章丘", 45),
("肇庆", 46),("大连", 47),("临汾", 47),("吴江", 47),("石嘴山", 49),("沈阳", 50),
("苏州", 50),("茂名", 50),("嘉兴", 51),("长春", 51),("胶州", 52),("银川", 52),
("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54),
("自贡", 56),("吉林", 56),("阳江", 57),("泸州", 57),("西宁", 57),("宜宾", 58),
("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59),
("宜兴", 59),("北海", 60),("西安", 61),("金坛", 62),("东营", 62),("牡丹江", 63),
("遵义", 63),("绍兴", 63),("扬州", 64),("常州", 64),("潍坊", 65),("重庆", 66),
("台州", 67),("南京", 67),("滨州", 70),("贵阳", 71),("无锡", 71),("本溪", 71),
("克拉玛依", 72),("渭南", 72),("马鞍山", 72),("宝鸡", 72),("焦作", 75),("句容", 75),
("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84),
("枣庄", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧阳", 86),("库尔勒", 86),
("安阳", 90),("开封", 90),("济南", 92),("德阳", 93),("温州", 95),("九江", 96),
("邯郸", 98),("临安", 99),("兰州", 99),("沧州", 100),("临沂", 103),("南充", 104),
("天津", 105),("富阳", 106),("泰安", 112),("诸暨", 112),("郑州", 113),("哈尔滨", 114),
("聊城", 116),("芜湖", 117),("唐山", 119),("平顶山", 119),("邢台", 119),("德州", 120),
("济宁", 120),("荆州", 127),("宜昌", 130),("义乌", 132),("丽水", 133),("洛阳", 134),
("秦皇岛", 136),("株洲", 143),("石家庄", 147),("莱芜", 148),("常德", 152),("保定", 153),
("湘潭", 154),("金华", 157),("岳阳", 169),("长沙", 175),("衢州", 177),("廊坊", 193),
("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], visual_text_color="#fff", symbol_size=15, is_visualmap=True)
geo.show_config()
geo.render()
visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道)
HeatMap 类型
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600,
background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="heatmap", is_visualmap=True, visual_range=[0, 300], visual_text_color='#fff')
geo.show_config()
geo.render()
EffectScatter 类型
from pyecharts import Geo
data = [("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.show_config()
geo.render()
用于展现节点以及节点之间的关系数据。
Graph.add() 方法签名
add(name, nodes, links, categories=None, is_focusnode=True, is_roam=True, is_rotatelabel=False,
layout="force", edge_length=50, gravity=0.2, repulsion=50, **kwargs)
from pyecharts import Graph
nodes = [{"name": "结点1", "symbolSize": 10},
{"name": "结点2", "symbolSize": 20},
{"name": "结点3", "symbolSize": 30},
{"name": "结点4", "symbolSize": 40},
{"name": "结点5", "symbolSize": 50},
{"name": "结点6", "symbolSize": 40},
{"name": "结点7", "symbolSize": 30},
{"name": "结点8", "symbolSize": 20}]
links = []
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph = Graph("关系图-力引导布局示例")
graph.add("", nodes, links, repulsion=8000)
graph.show_config()
graph.render()
graph = Graph("关系图-环形布局示例")
graph.add("", nodes, links, is_label_show=True, repulsion=8000, layout='circular', label_text_color=None)
graph.show_config()
graph.render()
from pyecharts import Graph
import json
with open("..\json\weibo.json", "r", encoding="utf-8") as f:
j = json.load(f)
nodes, links, categories, cont, mid, userl = j
graph = Graph("微博转发关系图", width=1200, height=600)
graph.add("", nodes, links, categories, label_pos="right", repulsion=50, is_legend_show=False,
line_curve=0.2, label_text_color=None)
graph.show_config()
graph.render()
Tip: 可配置 lineStyle 参数
热力图主要通过颜色去表现数值的大小,必须要配合 visualMap 组件使用。直角坐标系上必须要使用两个类目轴。
HeatMap.add() 方法签名
add(name, x_axis, y_axis, data, **kwargs)
import random
from pyecharts import HeatMap
x_axis = ["12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_aixs = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
heatmap = HeatMap()
heatmap.add("热力图直角坐标系", x_axis, y_aixs, data, is_visualmap=True,
visual_text_color="#000", visual_orient='horizontal')
heatmap.show_config()
heatmap.render()
Tip: 热力图必须配合 VisualMap 使用才有效果。
红涨蓝跌
Kline.add() 方法签名
add(name, x_axis, y_axis, **kwargs)
from pyecharts import Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1)
kline.show_config()
kline.render()
Kline + dataZoom
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1, mark_point=["max"], is_datazoom_show=True)
kline.show_config()
kline.render()
折线图是用折线将各个数据点标志连接起来的图表,用于展现数据的变化趋势。
Line.add() 方法签名
add(name, x_axis, y_axis, is_symbol_show=True, is_smooth=False, is_stack=False,
is_step=False, is_fill=False, **kwargs)
from pyecharts import Line
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 10, 100]
v2 = [55, 60, 16, 20, 15, 80]
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average"])
line.add("商家B", attr, v2, is_smooth=True, mark_line=["max", "average"])
line.show_config()
line.render()
标记点其他配置
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average", "max", "min"],
mark_point_symbol='diamond', mark_point_textcolor='#40ff27')
line.add("商家B", attr, v2, mark_point=["average", "max", "min"],
mark_point_symbol='arrow', mark_point_symbolsize=40)
line.show_config()
line.render()
line = Line("折线图-数据堆叠示例")
line.add("商家A", attr, v1, is_stack=True, is_label_show=True)
line.add("商家B", attr, v2, is_stack=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-阶梯图示例")
line.add("商家A", attr, v1, is_step=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-面积图示例")
line.add("商家A", attr, v1, is_fill=True, line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add("商家B", attr, v2, is_fill=True, area_color='#000', area_opacity=0.3, is_smooth=True)
line.show_config()
line.render()
Tip: 可配置 lineStyle 参数 Tip: 可以通过 label_color 来设置线条颜色,如 ['#eee', '#000'],所有的图表类型的图例颜色都可通过 label_color 来修改。
主要用来突出数据的百分比。
Liquid.add() 方法签名
add(name, data, shape='circle', liquid_color=None, is_liquid_animation=True,
is_liquid_outline_show=True, **kwargs)
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid.show_config()
liquid.render()
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_outline_show=False)
liquid.show_config()
liquid.render()
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid.show_config()
liquid.render()
地图主要用于地理区域数据的可视化。
Map.add() 方法签名
add(name, attr, value, is_roam=True, maptype='china', **kwargs)
from pyecharts import Map
value = [155, 10, 66, 78]
attr = ["福建", "山东", "北京", "上海"]
map = Map("全国地图示例", width=1200, height=600)
map.add("", attr, value, maptype='china')
map.show_config()
map.render()
from pyecharts import Map
value = [155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr = ["福建", "山东", "北京", "上海", "甘肃", "新疆", "河南", "广西", "西藏"]
map = Map("Map 结合 VisualMap 示例", width=1200, height=600)
map.add("", attr, value, maptype='china', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
Tip: 可结合 visualMap 组件进行设置
from pyecharts import Map
value = [20, 190, 253, 77, 65]
attr = ['汕头市', '汕尾市', '揭阳市', '阳江市', '肇庆市']
map = Map("广东地图示例", width=1200, height=600)
map.add("", attr, value, maptype='广东', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
平行坐标系是一种常用的可视化高维数据的图表。
Parallel.add() 方法签名
add(name, data, **kwargs)
Parallel.config() 方法签名
config(schema=None, c_schema=None)
from pyecharts import Parallel
schema = ["data", "AQI", "PM2.5", "PM10", "CO", "NO2"]
data = [
[1, 91, 45, 125, 0.82, 34],
[2, 65, 27, 78, 0.86, 45,],
[3, 83, 60, 84, 1.09, 73],
[4, 109, 81, 121, 1.28, 68],
[5, 106, 77, 114, 1.07, 55],
[6, 109, 81, 121, 1.28, 68],
[7, 106, 77, 114, 1.07, 55],
[8, 89, 65, 78, 0.86, 51, 26],
[9, 53, 33, 47, 0.64, 50, 17],
[10, 80, 55, 80, 1.01, 75, 24],
[11, 117, 81, 124, 1.03, 45]
]
parallel = Parallel("平行坐标系-默认指示器")
parallel.config(schema)
parallel.add("parallel", data, is_random=True)
parallel.show_config()
parallel.render()
from pyecharts import Parallel
c_schema = [
{"dim": 0, "name": "data"},
{"dim": 1, "name": "AQI"},
{"dim": 2, "name": "PM2.5"},
{"dim": 3, "name": "PM10"},
{"dim": 4, "name": "CO"},
{"dim": 5, "name": "NO2"},
{"dim": 6, "name": "CO2"},
{"dim": 7, "name": "等级",
"type": "category", "data": ['优', '良', '轻度污染', '中度污染', '重度污染', '严重污染']}
]
data = [
[1, 91, 45, 125, 0.82, 34, 23, "良"],
[2, 65, 27, 78, 0.86, 45, 29, "良"],
[3, 83, 60, 84, 1.09, 73, 27, "良"],
[4, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[5, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[6, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[7, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[8, 89, 65, 78, 0.86, 51, 26, "良"],
[9, 53, 33, 47, 0.64, 50, 17, "良"],
[10, 80, 55, 80, 1.01, 75, 24, "良"],
[11, 117, 81, 124, 1.03, 45, 24, "轻度污染"],
[12, 99, 71, 142, 1.1, 62, 42, "良"],
[13, 95, 69, 130, 1.28, 74, 50, "良"],
[14, 116, 87, 131, 1.47, 84, 40, "轻度污染"]
]
parallel = Parallel("平行坐标系-用户自定义指示器")
parallel.config(c_schema=c_schema)
parallel.add("parallel", data)
parallel.show_config()
parallel.render()
Tip: 可配置 lineStyle 参数
饼图主要用于表现不同类目的数据在总和中的占比。每个的弧度表示数据数量的比例。
Pie.add() 方法签名
add(name, attr, value, radius=None, center=None, rosetype=None, **kwargs)
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie.show_config()
pie.render()
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图-圆环图示例", title_pos='center')
pie.add("", attr, v1, radius=[40, 75], label_text_color=None, is_label_show=True,
legend_orient='vertical', legend_pos='left')
pie.show_config()
pie.render()
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
v2 = [19, 21, 32, 20, 20, 33]
pie = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area',
is_legend_show=False, is_label_show=True)
pie.show_config()
pie.render()
可以用于散点图和折线图。
Polar.add() 方法签名
add(name, data, angle_data=None, radius_data=None, type='line', symbol_size=4, start_angle=90,
rotate_step=0, boundary_gap=True, clockwise=True, **kwargs)
from pyecharts import Polar
import random
data = [(i, random.randint(1, 100)) for i in range(101)]
polar = Polar("极坐标系-散点图示例")
polar.add("", data, boundary_gap=False, type='scatter', is_splitline_show=False,
area_color=None, is_axisline_show=True)
polar.show_config()
polar.render()
Tip: 可配置 lineStyle 参数
from pyecharts import Polar
import random
data_1 = [(10, random.randint(1, 100)) for i in range(300)]
data_2 = [(11, random.randint(1, 100)) for i in range(300)]
polar = Polar("极坐标系-散点图示例", width=1200, height=600)
polar.add("", data_1, type='scatter')
polar.add("", data_2, type='scatter')
polar.show_config()
polar.render()
from pyecharts import Polar
import random
data = [(i, random.randint(1, 100)) for i in range(10)]
polar = Polar("极坐标系-动态散点图示例", width=1200, height=600)
polar.add("", data, type='effectScatter', effect_scale=10, effect_period=5)
polar.show_config()
polar.render()
from pyecharts import Polar
radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.show_config()
polar.render()
from pyecharts import Polar
radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barAngle', is_stack=True)
polar.show_config()
polar.render()
雷达图主要用于表现多变量的数据。
Radar.add() 方法签名
add(name, value, item_color=None, **kwargs)
Radar.config() 方法签名
config(schema=None, c_schema=None, shape="", rader_text_color="#000", **kwargs):
from pyecharts import Radar
schema = [
("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
radar = Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False)
radar.show_config()
radar.render()
Tip: 可配置 lineStyle 参数
value_bj = [
[55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2],
[56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4],
[42, 24, 44, 0.76, 40, 16, 5], [82, 58, 90, 1.77, 68, 33, 6],
[74, 49, 77, 1.46, 48, 27, 7], [78, 55, 80, 1.29, 59, 29, 8],
[267, 216, 280, 4.8, 108, 64, 9], [185, 127, 216, 2.52, 61, 27, 10],
[39, 19, 38, 0.57, 31, 15, 11], [41, 11, 40, 0.43, 21, 7, 12],
[64, 38, 74, 1.04, 46, 22, 13], [108, 79, 120, 1.7, 75, 41, 14],
[108, 63, 116, 1.48, 44, 26, 15], [33, 6, 29, 0.34, 13, 5, 16],
[94, 66, 110, 1.54, 62, 31, 17], [186, 142, 192, 3.88, 93, 79, 18],
[57, 31, 54, 0.96, 32, 14, 19], [22, 8, 17, 0.48, 23, 10, 20],
[39, 15, 36, 0.61, 29, 13, 21], [94, 69, 114, 2.08, 73, 39, 22],
[99, 73, 110, 2.43, 76, 48, 23], [31, 12, 30, 0.5, 32, 16, 24],
[42, 27, 43, 1, 53, 22, 25], [154, 117, 157, 3.05, 92, 58, 26],
[234, 185, 230, 4.09, 123, 69, 27],[160, 120, 186, 2.77, 91, 50, 28],
[134, 96, 165, 2.76, 83, 41, 29], [52, 24, 60, 1.03, 50, 21, 30],
]
value_sh = [
[91, 45, 125, 0.82, 34, 23, 1], [65, 27, 78, 0.86, 45, 29, 2],
[83, 60, 84, 1.09, 73, 27, 3], [109, 81, 121, 1.28, 68, 51, 4],
[106, 77, 114, 1.07, 55, 51, 5], [109, 81, 121, 1.28, 68, 51, 6],
[106, 77, 114, 1.07, 55, 51, 7], [89, 65, 78, 0.86, 51, 26, 8],
[53, 33, 47, 0.64, 50, 17, 9], [80, 55, 80, 1.01, 75, 24, 10],
[117, 81, 124, 1.03, 45, 24, 11], [99, 71, 142, 1.1, 62, 42, 12],
[95, 69, 130, 1.28, 74, 50, 13], [116, 87, 131, 1.47, 84, 40, 14],
[108, 80, 121, 1.3, 85, 37, 15], [134, 83, 167, 1.16, 57, 43, 16],
[79, 43, 107, 1.05, 59, 37, 17], [71, 46, 89, 0.86, 64, 25, 18],
[97, 71, 113, 1.17, 88, 31, 19], [84, 57, 91, 0.85, 55, 31, 20],
[87, 63, 101, 0.9, 56, 41, 21], [104, 77, 119, 1.09, 73, 48, 22],
[87, 62, 100, 1, 72, 28, 23], [168, 128, 172, 1.49, 97, 56, 24],
[65, 45, 51, 0.74, 39, 17, 25], [39, 24, 38, 0.61, 47, 17, 26],
[39, 24, 39, 0.59, 50, 19, 27], [93, 68, 96, 1.05, 79, 29, 28],
[188, 143, 197, 1.66, 99, 51, 29], [174, 131, 174, 1.55, 108, 50, 30],
]
c_schema= [{"name": "AQI", "max": 300, "min": 5},
{"name": "PM2.5", "max": 250, "min": 20},
{"name": "PM10", "max": 300, "min": 5},
{"name": "CO", "max": 5},
{"name": "NO2", "max": 200},
{"name": "SO2", "max": 100}]
radar = Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None)
radar.show_config()
radar.render()
Tip: symblo=None 可隐藏标记图形(小圆圈)
直角坐标系上的散点图可以用来展现数据的 x,y 之间的关系,如果数据项有多个维度,可以用颜色来表现,利用 geo 组件。
Scatter.add() 方法签名
add(name, x_value, y_value, symbol_size=10, **kwargs)
from pyecharts import Scatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [10, 20, 30, 40, 50, 60]
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render()
Scatter 还内置了画画方法
draw(path, color=None)
'''
将图片上的像素点转换为数组,如 color 为(255,255,255)时只保留非白色像素点的坐标信息
返回两个 k_lst, v_lst 两个列表刚好作为散点图的数据项
'''
首先你需要准备一张图片,如
from pyecharts import Scatter
scatter = Scatter("散点图示例")
v1, v2 = scatter.draw("../images/pyecharts-0.png")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render()
WordCloud.add() 方法签名
add(name, attr, value, shape="circle", word_gap=20, word_size_range=None, rotate_step=45)
from pyecharts import WordCloud
name = ['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications',
'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp',
'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham',
'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value = [10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555,
550, 462, 366, 360, 282, 273, 265]
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.show_config()
wordcloud.render()
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[30, 100], shape='diamond')
wordcloud.show_config()
wordcloud.render()
Tip: 当且仅当 shape 为默认的'circle'时 rotate_step 参数才生效
用户还可以自定义结合 Line/Bar/Kline, Scatter/EffectScatter 图表
需使用 get_series()
和 custom()
方法
get_series()
""" 获取图表的 series 数据 """
custom(series)
''' 追加自定义图表类型 '''
先用 get_series()
获取数据,再使用 custom()
将图表结合在一起
Line + Bar
from pyecharts import Bar, Line
attr = ['A', 'B', 'C', 'D', 'E', 'F']
v1 = [10, 20, 30, 40, 50, 60]
v2 = [15, 25, 35, 45, 55, 65]
v3 = [38, 28, 58, 48, 78, 68]
bar = Bar("Line - Bar 示例")
bar.add("bar", attr, v1)
line = Line()
line.add("line", v2, v3)
bar.custom(line.get_series())
bar.show_config()
bar.render()
Scatter + EffectScatter
from pyecharts import Scatter, EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [30, 30, 30, 30, 30, 30]
v3 = [50, 50, 50, 50, 50, 50]
v4 = [10, 10, 10, 10, 10, 10]
es = EffectScatter("Scatter - EffectScatter 示例")
es.add("es", v1, v2)
scatter = Scatter()
scatter.add("scatter", v1, v3)
es.custom(scatter.get_series())
es_1 = EffectScatter()
es_1.add("es_1", v1, v4, symbol='pin', effect_scale=5)
es.custom(es_1.get_series())
es.show_config()
es.render()
Kline + Line
import random
from pyecharts import Line, Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
attr = ["2017/7/{}".format(i + 1) for i in range(31)]
kline = Kline("Kline - Line 示例")
kline.add("日K", attr, v1)
line_1 = Line()
line_1.add("line-1", attr, [random.randint(2400, 2500) for _ in range(31)])
line_2 = Line()
line_2.add("line-2", attr, [random.randint(2400, 2500) for _ in range(31)])
kline.custom(line_1.get_series())
klidne.custom(line_2.get_series())
kline.show_config()
kline.render()