Stable Diffusion in pure C/C++ stable-diffusion.cpp Inference of Stable Diffusion in pure C/C++ Features Plain C/C++ implementation based on ggml, working in the same way as llama.cpp 16-bit, 32-bit float support 4-bit, 5-bit and 8-bit integer quantization support Accelerated memory-efficient CPU inference Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image AVX, AVX2 and AVX512 support for x86 architectures Original txt2img and img2img mode Negative p…
Code to accompany "A Method for Animating Children's Drawings of the Human Figure"Animated Drawings This repo contains an implementation of the algorithm described in the paper, `A Method for Animating Children's Drawings of the Human Figure' (to appear in Transactions on Graphics and to be presented at SIGGRAPH 2023). In addition, this repo aims to be a useful creative tool in its own right, allowing you to flexibly create animations starring your own drawn characters. If you do creat…
Configure external DNS servers (AWS Route53, Google CloudDNS and others) for Kubernetes Ingresses and Services hide toc navigation ExternalDNS ExternalDNS synchronizes exposed Kubernetes Services and Ingresses with DNS providers. What It Does Inspired by Kubernetes DNS, Kubernetes' cluster-internal DNS server, ExternalDNS makes Kubernetes resources discoverable via public DNS servers. Like KubeDNS, it retrieves a list of resources (…
Damn Vulnerable Web Application (DVWA)DAMN VULNERABLE WEB APPLICATION Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application that is damn vulnerable. Its main goal is to be an aid for security professionals to test their skills and tools in a legal environment, help web developers better understand the processes of securing web applications and to aid both students & teachers to learn about web application security in a controlled class room environment. The aim of DVWA is to…
An advanced guide to learn English which might benefit you a lot 🎉 . 可能是让你受益匪浅的英语进阶指南。项目介绍 An advanced guide to learn English which might benefit you a lot. 可能是让你受益匪浅的英语进阶指南。 背景 不久前(2017年7月初),备考托福的女神问了我一个问题:如何高效学习英语? 在我思考如何回答这个问题时,想到了在大四上一学期我考过 26 门课的经验(其中重修 19 门,当前学期 7 门),觉得我应该能勉强提供一些高效学习的小技巧。 与她交流了一番学习心得后,我惊讶于她在学习方面的热情竟是如此之高,同时也发现了她的学习方法存在一些不可取之处。 于是我写了一篇简单的文章零散地介绍了下我学习英语的小技巧,几天后她告诉我,希望我可以这些学习经验稍加整理,分享给更多有需要的人。 在此之前,我并不知道原来有那么多的同学在学习英语的道路上是一路走到黑的。 他们甚至从未想过:英语作为一门语言,学习起来应该是一件比较自然而然的事情,就像我们自然而然…
Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video ProcessingCoDeF: Content Deformation Fields for Temporally Consistent Video Processing Hao Ouyang*, Qiuyu Wang*, Yuxi Xiao*, Qingyan Bai, Juntao Zhang, Kecheng Zheng, Xiaowei Zhou, Qifeng Chen†, Yujun Shen† (*equal contribution, †corresponding author) Project Page | Paper | High-Res Translation Demo Requirements The codebase is tested on Ubuntu 20.04 Python 3.10 PyTorch 2.0.0 PyTorch Lightnin…
Kotlin multiplatform / multi-format serializationKotlin multiplatform / multi-format reflectionless serialization Kotlin serialization consists of a compiler plugin, that generates visitor code for serializable classes, runtime library with core serialization API and support libraries with various serialization formats. Supports Kotlin classes marked as @Serializable and standard collections. Provides JSON, Protobuf, CBOR, Hocon and Properties formats. Complete multiplatform support: J…
We write your reusable computer vision tools. 💜 👋 hello We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝 💻 install Pip install the supervision package in a 3.11>=Python>=3.8 environment. pip install supervision[desktop] Read more about desktop, headless, and local installation in our guide. 🔥 quick…
搜索引擎原理搜索引擎技术 搜索引擎基础 搜索引擎的基本概念 什么决定用户满意度? 搜索引擎的链路 搜索引擎的评价指标 相关性 相关性的定义与分档 文本匹配分数 相关性BERT模型 相关性BERT模型的训练 其他决定用户满意度的因子 内容质量 时效性 地域性 个性化 查询词处理 分词:基于字典匹配的方法 & 新词发现 分词:基于深度学习的方法 词权重 (Term Weight) 类目识别 意图识别 查询词改写 召回 倒排索引和文本召回 向量召回 缓存召回 排序 排序的原理 融合模型的训练方法 查询词推荐 查询词推荐的场景 查询词推荐的召回 查询词推荐的排序