carbon-language / carbon-lang
- пятница, 22 июля 2022 г. в 00:32:13
Carbon Language's main repository: documents, design, implementation, and related tools. (NOTE: Carbon Language is experimental; see README)
Why? | Goals | Getting started | Join us
Fast and works with C++
Modern and evolving
Welcoming open-source community
C++ remains the dominant programming language for performance-critical software, with massive and growing codebases and investments. However, it is struggling to improve and meet developers' needs outlined above, in no small part due to accumulating decades of technical debt. Incrementally improving C++ is extremely difficult, both due to the technical debt itself and challenges with its evolution process. The best way to address these problems is to avoid inheriting the legacy of C or C++ directly, and instead start with solid language foundations like a modern generics system, modular code organization, and consistent, simple syntax.
Existing modern languages already provide an excellent developer experience: Go, Swift, Kotlin, Rust, and many more. Developers that can use one of these existing languages should. Unfortunately, the designs of these languages present significant barriers to adoption and migration from C++. These barriers range from changes in the idiomatic design of software to performance overhead.
Carbon is fundamentally a successor language approach, rather than an attempt to incrementally evolve C++. It is designed around interoperability with C++ as well as large-scale adoption and migration for existing C++ codebases and developers. A successor language for C++ requires:
With this approach, we can build on top of C++'s existing ecosystem, and bring along existing investments, codebases, and developer populations. There are a few languages that have followed this model for other ecosystems, and Carbon aims to fill an analogous role for C++:
We are designing Carbon to support:
While many languages share subsets of these goals, what distinguishes Carbon is their combination.
We also have explicit non-goals for Carbon, notably including:
Our detailed goals document fleshes out these ideas and provides a deeper view into our goals for the Carbon project and language.
Carbon is currently an experimental project. We want to better understand whether we can build a language that meets our successor language criteria, and whether the resulting language can gather a critical mass of interest within the larger C++ industry and community.
Currently, we have fleshed out several core aspects of both Carbon the project and the language:
We are currently focused on getting more broad feedback and participation from the C++ community, completing the 0.1 language design, and completing the Carbon Explorer implementation of this design. Beyond that, we plan to prioritize C++ interoperability and a realistic toolchain that implements the 0.1 language and can be used to evaluate Carbon in more detail.
You can see our full roadmap for more details.
If you're already a C++ developer, Carbon should have a gentle learning curve. It is built out of a consistent set of language constructs that should feel familiar and be easy to read and understand.
C++ code like this:
corresponds to this Carbon code:
You can call Carbon from C++ without overhead and the other way around. This means you migrate a single C++ library to Carbon within an application, or write new Carbon on top of your existing C++ investment. For example:
Read more about C++ interop in Carbon.
Beyond interoperability between Carbon and C++, we're also planning to support migration tools that will mechanically translate idiomatic C++ code into Carbon code to help you switch an existing C++ codebase to Carbon.
Carbon provides a modern generics system with checked definitions, while still supporting opt-in templates for seamless C++ interop. Checked generics provide several advantages compared to C++ templates:
Without sacrificing these advantages, Carbon generics support specialization, ensuring it can fully address performance-critical use cases of C++ templates. For more details about Carbon's generics, see their design.
In addition to easy and powerful interop with C++, Carbon templates can be constrained and incrementally migrated to checked generics at a fine granularity and with a smooth evolutionary path.
Safety, and especially memory safety, remain key challenges for C++ and something a successor language needs to address. Our initial priority and focus is on immediately addressing important, low-hanging fruit in the safety space:
Once we can migrate code into Carbon, we will have a simplified language with room in the design space to add any necessary annotations or features, and infrastructure like generics to support safer design patterns. Longer term, we will build on this to introduce a safe Carbon subset. This will be a large and complex undertaking, and won't be in the 0.1 design. Meanwhile, we are closely watching and learning from efforts to add memory safe semantics onto C++ such as Rust-inspired lifetime annotations.
You can get started playing with Carbon by checking out the codebase and using the Carbon explorer:
# Install bazelisk using Homebrew.
$ brew install bazelisk
# Install Clang/LLVM using Homebrew.
# Many Clang/LLVM releases aren't built with options we rely on.
$ brew install llvm
$ export PATH="$(brew --prefix llvm)/bin:${PATH}"
# Download Carbon's code.
$ git clone https://github.com/carbon-language/carbon-lang
$ cd carbon-lang
# Build and run the explorer.
$ bazel run //explorer -- ./explorer/testdata/print/format_only.carbon
These instructions assume Homebrew; see our contribution tools documentation for more extensive tooling instructions.
Learn more about the Carbon project:
Carbon is committed to a welcoming and inclusive environment where everyone can contribute.