aws-samples / amazon-bedrock-workshop
- воскресенье, 19 ноября 2023 г. в 00:00:12
This is a workshop designed for Amazon Bedrock a foundational model service.
This hands-on workshop, aimed at developers and solution builders, introduces how to leverage foundation models (FMs) through Amazon Bedrock.
Amazon Bedrock is a fully managed service that provides access to FMs from third-party providers and Amazon; available via an API. With Bedrock, you can choose from a variety of models to find the one that’s best suited for your use case.
Within this series of labs, you'll explore some of the most common usage patterns we are seeing with our customers for Generative AI. We will show techniques for generating text and images, creating value for organizations by improving productivity. This is achieved by leveraging foundation models to help in composing emails, summarizing text, answering questions, building chatbots, and creating images. You will gain hands-on experience implementing these patterns via Bedrock APIs and SDKs, as well as open-source software like LangChain and FAISS.
Labs include:
You can also refer to these Step-by-step guided instructions on the workshop website.
This workshop is presented as a series of Python notebooks, which you can run from the environment of your choice:
The AWS identity you assume from your notebook environment (which is the Studio/notebook Execution Role from SageMaker, or could be a role or IAM User for self-managed notebooks), must have sufficient AWS IAM permissions to call the Amazon Bedrock service.
To grant Bedrock access to your identity, you can:
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "BedrockFullAccess",
"Effect": "Allow",
"Action": ["bedrock:*"],
"Resource": "*"
}
]
}
⚠️ Note: With Amazon SageMaker, your notebook execution role will typically be separate from the user or role that you log in to the AWS Console with. If you'd like to explore the AWS Console for Amazon Bedrock, you'll need to grant permissions to your Console user/role too.
For more information on the fine-grained action and resource permissions in Bedrock, check out the Bedrock Developer Guide.
ℹ️ Note: In SageMaker Studio, you can open a "System Terminal" to run these commands by clicking File > New > Terminal
Once your notebook environment is set up, clone this workshop repository into it.
sudo yum install -y unzip
git clone https://github.com/aws-samples/amazon-bedrock-workshop.git
cd amazon-bedrock-workshop
You're now ready to explore the lab notebooks! Start with 00_Intro/bedrock_boto3_setup.ipynb for details on how to install the Bedrock SDKs, create a client, and start calling the APIs from Python.
This repository contains notebook examples for the Bedrock Architecture Patterns workshop. The notebooks are organised by module as follows:
Code Generation: Demonstrates how to generate Python code using Natural language. It shows examples of prompting to generate simple functions, classes, and full programs in Python for Data Analyst to perform sales analysis on a given Sales CSV dataset.
Database or SQL Query Generation : Focuses on generating SQL queries with Amazon Bedrock APIs. It includes examples of generating both simple and complex SQL statements for a given data set and database schema.
Code Explanation : Uses Bedrock's foundation models to generate explanations for complex C++ code snippets. It shows how to carefully craft prompts to get the model to generate comments and documentation that explain the functionality and logic of complicated C++ code examples. Prompts can be easily updated for another programming languages.
Code Translation : Guides you through translating C++ code to Java using Amazon Bedrock and LangChain APIs. It shows techniques for prompting the model to port C++ code over to Java, handling differences in syntax, language constructs, and conventions between the languages.
LLM & NeMo Guardrails: Explores the implementation of guardrails for Language Model (LLM) generated responses using Amazon Bedrock and NVIDIA's NeMo. It highlights the utility of guardrails in ensuring responses adhere to desired parameters, providing a more advanced mechanism over standard system prompts. This notebook demonstrates the integration and configuration of guardrails with NeMo and Bedrock, showcasing various guardrail configurations like Jailbreaking Rail, Topical Rail, Moderation Rail and Fact Checking for safer and more reliable AI interactions.