allenai / open-instruct
- среда, 27 ноября 2024 г. в 00:00:02
This repo serves as an open effort on instruction-tuning popular pretrained language models on publicly available datasets. We release this repo and will keep updating it with:
Please see our first paper How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources for more thoughts behind this project and our initial findings. Please see our second paper Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2 for results using Llama-2 models and direct preference optimization. We are still working on more models. For more recent results involving PPO and DPO please see our third paper Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback.
scripts/eval/
for examples of running them.Our setup mostly follows our Dockerfile, which uses Python 3.10. Note that Open Instruct is a research codebase and does not guarantee backward compatibility. We offer two installation strategies:
pip install --upgrade pip "setuptools<70.0.0" wheel
# TODO, unpin setuptools when this issue in flash attention is resolved
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121
pip install packaging
pip install flash-attn==2.6.3 --no-build-isolation
pip install -r requirements.txt
python -m nltk.downloader punkt
pip install -e .
docker build --build-arg CUDA=12.1.0 --build-arg TARGET=cudnn8-devel --build-arg DIST=ubuntu20.04 . -t open_instruct_dev
# if you are interally at AI2, you can create an image like this:
beaker image delete $(whoami)/open_instruct_dev
beaker image create open_instruct_dev -n open_instruct_dev -w ai2/$(whoami)
If you are internally at AI2, you may launch experiments using our always-up-to-date auto-built image nathanl/open_instruct_auto
.
After having setup the environment, you are ready to launch some experiments. We provide a few examples below. To learn more about how to reproduce the Tulu 3 models, please refer to the Tulu 3 README. The instructions and documentations for Tulu 1 and Tulu 2 are in Tulu 1 and 2 README.
You can run the following commands for getting started:
# quick debugging run using 1 GPU
sh scripts/finetune_with_accelerate_config.sh 1 configs/train_configs/sft/mini.yaml
# train an 8B tulu3 model using 8 GPU
sh scripts/finetune_with_accelerate_config.sh 8 configs/train_configs/tulu3/tulu3_sft.yaml
# quick debugging run using 1 GPU
sh scripts/dpo_train_with_accelerate_config.sh 1 configs/train_configs/dpo/mini.yaml
# train an 8B tulu3 model using 8 GPU
sh scripts/finetune_with_accelerate_config.sh 8 configs/train_configs/tulu3/tulu3_dpo_8b.yaml
# quick debugging run using 2 GPU (1 for inference, 1 for training)
# here we are using `HuggingFaceTB/SmolLM2-360M-Instruct`; it's prob not
# gonna work, but it's easy to test run and print stuff.
python open_instruct/ppo_vllm_thread_ray_gtrl.py \
--dataset_mixer '{"ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed": 1.0}' \
--dataset_train_splits train \
--dataset_eval_mixer '{"ai2-adapt-dev/gsm8k_math_ground_truth": 1.0}' \
--dataset_eval_splits test \
--max_token_length 2048 \
--max_prompt_token_length 2048 \
--response_length 2048 \
--model_name_or_path HuggingFaceTB/SmolLM2-360M-Instruct \
--reward_model_path HuggingFaceTB/SmolLM2-360M-Instruct \
--non_stop_penalty \
--stop_token eos \
--temperature 1.0 \
--ground_truths_key ground_truth \
--chat_template tulu \
--sft_messages_key messages \
--learning_rate 3e-7 \
--total_episodes 10000 \
--penalty_reward_value -10.0 \
--deepspeed_stage 3 \
--per_device_train_batch_size 2 \
--local_rollout_forward_batch_size 2 \
--local_mini_batch_size 32 \
--local_rollout_batch_size 32 \
--num_epochs 1 \
--actor_num_gpus_per_node 1 \
--vllm_tensor_parallel_size 1 \
--beta 0.05 \
--apply_verifiable_reward true \
--output_dir output/rlvr_1b \
--seed 3 \
--num_evals 3 \
--save_freq 100 \
--reward_model_multiplier 0.0 \
--gradient_checkpointing \
--with_tracking
# train an 8B tulu3 model using 8 GPU (1 for inference, 7 for training)
python open_instruct/ppo_vllm_thread_ray_gtrl.py \
--dataset_mixer '{"ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed": 1.0}' \
--dataset_train_splits train \
--dataset_eval_mixer '{"ai2-adapt-dev/gsm8k_math_ground_truth": 1.0}' \
--dataset_eval_splits test \
--max_token_length 2048 \
--max_prompt_token_length 2048 \
--response_length 2048 \
--model_name_or_path allenai/Llama-3.1-Tulu-3-8B-DPO \
--reward_model_path allenai/Llama-3.1-Tulu-3-8B-RM \
--non_stop_penalty \
--stop_token eos \
--temperature 1.0 \
--ground_truths_key ground_truth \
--chat_template tulu \
--sft_messages_key messages \
--learning_rate 3e-7 \
--total_episodes 10000000 \
--penalty_reward_value -10.0 \
--deepspeed_stage 3 \
--per_device_train_batch_size 2 \
--local_rollout_forward_batch_size 2 \
--local_mini_batch_size 32 \
--local_rollout_batch_size 32 \
--actor_num_gpus_per_node 7 \
--vllm_tensor_parallel_size 1 \
--beta 0.05 \
--apply_verifiable_reward true \
--output_dir output/rlvr_8b \
--seed 3 \
--num_evals 3 \
--save_freq 100 \
--reward_model_multiplier 0.0 \
--gradient_checkpointing \
--with_tracking
We release our scripts for measuring the overlap between instruction tuning datasets and evaluation datasets in ./decontamination
. See the README for more details.
When submitting a PR to this repo, we check the core code in open_instruct/
for style with the following:
make style
make quality
├── assets/ <- Images, licenses, etc.
├── configs/
| ├── beaker_configs/ <- AI2 Beaker configs
| ├── ds_configs/ <- DeepSpeed configs
| └── train_configs/ <- Training configs
├── decontamination/ <- Scripts for measuring train-eval overlap
├── eval/ <- Evaluation suite for fine-tuned models
├── human_eval/ <- Human evaluation interface (not maintained)
├── open_instruct/ <- Source code (flat)
├── quantize/ <- Scripts for quantization
├── scripts/ <- Core training and evaluation scripts
└── Dockerfile <- Dockerfile
This codebase is licensed under Apache 2.0 as given in LICENSE.
The license we use for V1 models released (along with the base model licenses) can be found in assets/model_licenses/tulu_license.txt - just replace <MODELNAME>
with the actual model name (i.e., the name on HuggingFace).
V2 models are licensed under the low-risk AI2 ImpACT license. See here for more details.
Open Instruct is a project that benefitd from many open-source projects and libraries. We would like to particularly thank the folloiwng projects:
If you used this repository or our models, please cite our work:
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{ivison2023camels,
title={Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2},
author={Hamish Ivison and Yizhong Wang and Valentina Pyatkin and Nathan Lambert and Matthew Peters and Pradeep Dasigi and Joel Jang and David Wadden and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2311.10702},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{ivison2024unpacking,
title={Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback},
author={Hamish Ivison and Yizhong Wang and Jiacheng Liu and Zeqiu Wu and Valentina Pyatkin and Nathan Lambert and Noah A. Smith and Yejin Choi and Hannaneh Hajishirzi},
year={2024},
eprint={2406.09279},
archivePrefix={arXiv},
primaryClass={cs.CL},
}