https://habr.com/ru/post/474150/- Python
- Алгоритмы
- Математика
Фильтр Калмана (ФК) является оптимальным линейным алгоритмом фильтрации параметров динамической линейной системы при наличии неполных и зашумленных наблюдений. Этот фильтр находит широкое применение в технических системах управления до оценок динамики изменения макроэкономических ситуаций или общественного мнения.
Данная статья ставит себе целью познакомить читателя со стандартным подходом к переходу от непрерывной модели динамической системы, описываемой системой произвольных линейных дифференциальных уравнений к дискретной модели.
Скрытый текста так же сэкономить читателю время, избавляя того от попыток изобретения велосипеда и выставления себя перед коллегами в некрасивом свете. Не будьте как автор
Так же эта статья призвана сподвигнуть читателя на применение ФК в тех задачах, где на первый взгляд кажется что линейный ФК неприменим, а на самом деле это может быть не так.
Написать статью автора сподвиг тот факт, что несмотря на простоту последующих вещей в поисковой выдаче гугла как на русском так и на английском языке (по крайней мере на первой странице) автору найти их не удалось.
Динамическая модель для дискретного фильтра Калмана
Скрытый текстВ основном этот раздел нужен, для того чтобы познакомить читателя с системой принятых обозначений, которая очен сильно разнится от книги к книге и от статьи к статье. Объяснение смысла всех входящих в уравнения величин выходит за рамки данной статьи, при этом подразумевается что зашедший на огонек имеет об этом смысле некоторое представление. Если это не так, добро пожаловать
сюда,
сюда и
сюда.
ФК может быть выполнен как в дискретном так и непрерывном виде. Наибольший интерес с точки зрения практической реализации на современных цифровых вычислителях представляет именно дискретный ФК на который будет сделан упор в данной статье.
Линейный дискретный ФК описывается следующими выражениями. Пусть модель системы может быть представлена следующим образом:
где
— матрица перехода,
— переходная матрица управления,
— переходная матрица возмущения,
,
,
— вектора состояния, управления и шумов (возмущения) системы на
-том шаге. Модель наблюдения:
где
,
— вектора наблюдения и шума наблюдения на
-том шаге. 5 уравнений работы ФК в данной статье интереса не представляют, поэтому на случай если они кому-либо нужны приводятся под спойлером.
Скрытый текстПервый этап, экстраполяция:
Данный этап принято называть экстраполяцией. Следующий этап, называемый коррекция:
собственно самой оценки
Здесь и далее речь идет о стационарных (с постоянными коэффициентами) системах, для которых матрицы
,
и
не зависят от номера
.
Непрерывная динамическая модель системы. Пространство состояний.
В подавляющем большинстве практических приложений ФК осуществляет фильтрацию параметров непрерывных динамических систем, описываемых дифференциальными уравнениями для непрерывного времени. Обсчет ФК при этом происходит на цифровом вычислителе, что автоматически делает ФК дискретным и модель соответственно должна быть дискретной. Для получения дискретной модели этих непрерывных систем необходимо сначала составить сам вектор состояния (фазовый вектор), систему уравнения состояния, затем дискретизировать их, получив тем самым матрицы
,
и
.
Пусть поведение системы описывается набором из
дифференциальных уравнений первого порядка:
здесь
—
-мерный вектор состояния системы. Вектор состояния (он же фазовый вектор) это вектор, который содержит в себе переменные, описывающие систему и их производные вплоть до необходимого порядка.
—
-мерный вектор управления системы, описывающий оказываемое на систему контролируемое воздействие.
-мерный вектор, содержащий в себе случайное неконтролируемое воздействие на систему, или шумы.
— матрица состояния системы размером
.
— матрица управления размером
.
— матрица возмущения размером
. В этом выражении все произведения вычисляются по правилам матричного умножения. В общем случае элементы всех матриц являются функциями времени, однако в статье рассматриваются только стационарные системы, где элементы не зависят от времени.
Пример перехода от описания системы с помощью дифференциального уравнения высшего порядка к описанию через пространство состояний приведен ниже.
ПримерПусть движение точки вдоль некоторой оси
описывается дифференциальным уравнением второго порядка:
Если кто не помнит, таким образом представляется колебательное движение. Перейдем от уравнения второго порядка к системе из двух уравнений путем введения новой переменной
. Теперь имеем:
Данная система уравнений может быть записана в матричном виде, при этом вектор состояния
, матрица состояния окажется
Введенная переменная
играет роль скорости. Матрицы
и
в данном примере являются нулевыми, так как отсутствуют какие-либо управляющие и возмущающие воздействия.
Переход в дискретную область
Для корректного перехода в дискретную область (другими словами дискретизации модели) нам потребуется ввести понятие
матричной экспоненты. Матричной экспонентой называется матричная функция, полученная по аналогии с разложением экспоненциальной функции в ряд Тейлора
на самом деле Маклорена:
где под
подразумевается единичная матрица.
Точный переход от непрерывной модели в пространстве состояний к дискретной модели требует поиска решения однородной системы
, затем перехода к первоначальной системе, отыскания общего решения и интегрирования от начального момента
до некоторого
. Строгий вывод может быть найден в [1], здесь же приводится готовый результат.
В случае стационарности непрерывной динамической модели (не зависимости матриц
,
,
от времени) для получения дискретной модели можно ввести вспомогательную переходную матрицу системы
из момента
в момент
, где
:
Далее с помощью этой вспомогательной матрицы могут быть получены требуемые для дискретной модели матрицы:
Здесь под
и
подразумеваются матрицы из непрерывных уравнений, под
и
искомые матрицы дискретной модели.
Практические примеры
Скрытый текстК сожалению в примерах будут только извращения с матрицей , так как автору лень выдумывать примеры с управляющими воздействиями и вообще он в рамках диссертации занимается вопросами навигации где управляющих воздействий нет. Тем более что при зачаточных знаниях математического анализа после разбора примеров эти действия не должны вызвать проблем. За примерами с ненулевыми и можно сходить в [2].
Для иллюстрации вышеописанной математики рассмотрим два примера. Один из которых разминочный, а второй иллюстративный, для демонстрации возможностей описанного метода.
Тривиальный
Пусть объект движется вдоль оси
с начальной скоростью
и постоянным ускорением
. Тогда его модель может быть представлена в виде:
Представим эту модель в виде системы однородных дифференциальных уравнений. Для этого разобьем уравнение на систему из трех ДУ:
При записи систем уравнений туда добавляются следующие производные пока для вычисления текущей требуется следующая. То в текущей системе нельзя остановиться на
, так как для вычисления требуется
. В то же время для вычисления
производная
не требуется, поэтому вносить производные порядка выше
в вектор состояния не имеет особого смысла.
Объединим три переменных в вектор состояния
и запишем систему уравнений в матричном виде для перехода к форме пространства состояния:
где матрица
Теперь можно рассчитать матрицу перехода дискретной динамической системы, соответствующей рассматриваемой непрерывной:
Читатель может сам убедиться в том, что
и выше представляет собой нулевую матрицу.
Таким образом получена известная всем матрица перехода, выведенная без применения каких-либо допущений.
Нетривиальный пример
Положим что наш объект движется в трехмерном пространстве с некой постоянной (по модулю) линейной скоростью и с угловой скоростью, представленной псевдовектором:
Для начала необходимо составить уравнения пространства состояний. Запишем ускорение при движении по окружности. Из курса физики за 1 семестр известно, что центростремительное ускорение является векторным произведением угловой и линейной скоростей:
Здесь вектор скорости представляет собой
.
Распишем векторное произведение подробнее:
Теперь запишем систему уравнений
При переходе к матричной форме матрица
будет представлять собой:
Далее осуществим переход к матрице
по соответствующему выражению. Так как устно перемножать матрицы размером
по три раза довольно тяжело, вероятность ошибки велика, да и не царское это дело, то напишем скрипт с использованием библиотеки sympy языка Python:
from sympy import symbols, Matrix, eye
x, y, z, T = symbols('x y z T')
vx, vy, vz = symbols('v_x v_y v_z')
wx, wy, wz = symbols('w_x w_y w_z')
A = Matrix([
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, -wz, wy],
[0, 0, 0, wz, 0, -wx],
[0, 0, 0, -wy, wx, 0]
])
F = eye(6) + A*T + A*A*T**2/2
from sympy import latex
print(latex(F))
И запустив его получим примерно вот это:
Скрытый текст\left[\begin{matrix}1 & 0 & 0 & T & - \frac{T^{2} w_{z}}{2} & \frac{T^{2} w_{y}}{2}\\0 & 1 & 0 & \frac{T^{2} w_{z}}{2} & T & - \frac{T^{2} w_{x}}{2}\\0 & 0 & 1 & - \frac{T^{2} w_{y}}{2} & \frac{T^{2} w_{x}}{2} & T\\0 & 0 & 0 & \frac{T^{2} \left(- w_{y}^{2} - w_{z}^{2}\right)}{2} + 1 & \frac{T^{2} w_{x} w_{y}}{2} - T w_{z} & \frac{T^{2} w_{x} w_{z}}{2} + T w_{y}\\0 & 0 & 0 & \frac{T^{2} w_{x} w_{y}}{2} + T w_{z} & \frac{T^{2} \left(- w_{x}^{2} - w_{z}^{2}\right)}{2} + 1 & \frac{T^{2} w_{y} w_{z}}{2} - T w_{x}\\0 & 0 & 0 & \frac{T^{2} w_{x} w_{z}}{2} - T w_{y} & \frac{T^{2} w_{y} w_{z}}{2} + T w_{x} & \frac{T^{2} \left(- w_{x}^{2} - w_{y}^{2}\right)}{2} + 1\end{matrix}\right]
Что после обрамления соответствующими тэгами и вставки в исходный код статьи превращается в:
Таким образом может быть выведена матрица перехода фильтра Калмана для движения по окружности.
В отличии от предыдущего случая результат возведения
в степень выше 3 не является нулевой матрицей.
например <math>$inline$A^3$inline$</math>
или <math>$inline$A^4$inline$</math>
Поэтому представление такой матрицы возможно с конечной точностью. Однако при
ряды, получающиеся в элементах матрицы
сходятся довольно быстро. Для практического применения достаточно членов до второй степени, редко до третьей и тем более до четвертой.
Дополнительно проиллюстрируем работу матрицы
задав вектор
,
,
, и рекуррентную последовательность вида:
Рассчитаем данную рекуррентную последовательность для
код на Pythonimport numpy as np
from numpy import pi
T = 1
wx, wy, wz = 0, 2*pi/100/2**.5, 2*pi/100/2**.5
vx0 = 10
A = np.array([
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, -wz, wy],
[0, 0, 0, wz, 0, -wx],
[0, 0, 0, -wy, wx, 0]
])
F = np.eye(6) + A * T + A @ A * T**2/2 + A @ A @ A * T**3/6
X = np.zeros((6, 101))
X[:, 0] = np.array([0, 0, 0, vx0, 0, 0])
for k in range(X.shape[1] - 1):
X[:, k + 1] = F @ X[:, k]
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot(X[0, :], X[1, :], X[2, :])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
Напомню, что для типа np.array символ "@" обозначает матричное перемножение. Расстояния и скорости измеряются в попугаях, угловая скорость в рад/с. Так же необходимо помнить, что для получения окружности надо чтобы вектора скорости и угловой скорости были перпендикулярны, иначе вместо окружности получится спираль.
В итоге задав некоторое начальное положение, скорость и угловую скорость можно получить такую траекторию

Точность совпадения первой и последних точек может быть получена как
>>> print(X[:3, 0] - X[:3,-1])
[-0.00051924 -0.0072984 0.0072984 ]
При радиусе поворота порядка 150 единиц относительная погрешность не превышает величин порядка
. Этой точности вполне достаточно для модели ФК, следящего за поворачивающей целью.
Заключение
Если раньше ФК применялся в основном для решения задач навигации, где применение линейных моделей движения давало неплохой результат, то с развитием таких современных приложений как робототехника, компьютерное зрение и прочее увеличилась надобность и в более сложных моделях движения объектов. При этом применение вышеописанного подхода позволяет без особых затрат синтезировать дискретную модель ФК, что позволят облегчить разработчикам задачу. Единственное ограничение такого подхода заключается в том, что непрерывная модель динамической системы должна описываться набором линейных, или хотя бы линеаризуемых, уравнений в пространстве состояния.
Резюмируя вышесказанное можно привести алгоритм синтеза переходной матрицы ФК:
- Запись дифференциального уравнения системы
- Переход к вектору состояния и к пространству состояний
- Линеаризация в случае необходимости
- Представление матрицы перехода в виде матричной экспоненты и усечение ряда при необходимости
- Вычисление остальных матриц с учетом матрицы перехода
Автором приветствуется конструктивная критика в отношении допущенных ошибок, неточностей, неверных формулировок, не упомянутых методов и прочего. Спасибо за внимание!
Использованная литература
[1] Медич Дж. Статистически оптимальные линейные оценки и управление. Пер. с англ. Под ред. А.С. Шаталова Москва. Издательство «Энергия», 1973, 440 с.
[2] Матвеев В.В.Основы построения бесплатформенных инерциальных систем СПб.: ГНЦ РФ ОАО «Концерн „ЦНИИ Электроприбор“,2009. — 280с. ISBN 978-5-900180-73-3