https://habrahabr.ru/post/339088/- Разработка под Windows
- Математика
- Python
Вопрос диеты всегда будоражил умы слабого пола и не только. Не взирая на большое количество рекомендаций диетологов, вопрос диеты для многих так и остаётся нерешённым. В таких условиях хочу предложить альтернативный вариант, особо не привлекая диетологию, а опираясь исключительно на линейное программирование, надеюсь, неплохой повод уже серьёзно задуматься о проблеме.
Должна ли диета быть экономной?
Для поддержания нормальной жизнедеятельности человеку необходимо потреблять в день не менее 118 г белков, 56 г жиров, 500 г углеводов и 28 г минеральных солей. Эти питательные вещества содержатся в разных количествах и разных пищевых продуктах.
В таблице приведено количество питательных веществ в различных продуктах в г/кг и цена этих продуктов за 1 кг. Необходимо составить дневной рацион, содержащий минимальную суточную норму питательных веществ при минимальной их стоимости.
Обозначив через: Х1 –количество мяса; Х2- количество рыбы; Х3- количество молока; Х4- количество масла; Х5- количество сыра; Х6- количество крупы; Х7- количество картофеля, потребляемых человеком в день. Можем составить уравнение общей стоимости F питания в день:
F=333*X1+308*X2+52*X3+400*X4+450*X5+56*X6+25*X7Нам нужно найти минимум F. Суммарное количество белков в рационе человека должно быть не меньше 118 г. Отсюда,
180*X1+190*X2+30*X3+10*X4+260*X5+130*X6+21*X7≥118
Такие же неравенства составляем для жиров, углеводов и солей. Имеем:
20*X1+3*X2+40*X3+865*X4+310*X5+30*X6+2*X7≥56
50*X3+6*X4+20*X5+650*X6+200*X7≥500
9*X1+10*X2+7*X3+12*X4+60*X5+20*X6+10*X7≥28
Решим задачу на Python
from cvxopt.modeling import variable, op
import time
start = time.time()
x = variable(7, 'x')
z=(333*x[0] + 308*x[1] +52* x[2] +400*x[3] +450*x[4] +56* x[5]+20*x[6])
mass1 =(- (180*x[0] + 190*x[1] +30* x[2] +10*x[3] +260*x[4] +130* x[5]+21*x[6]) <= -118)
mass2 =(- (20*x[0] + 3*x[1] +40* x[2] +865*x[3] +310*x[4] +30* x[5]+2*x[6]) <= -56)
mass3 =(- (50* x[2] +6*x[3] +20*x[4] +650* x[5]+200*x[6]) <= -500)
mass4 =(- (9*x[0] + 10*x[1] +7* x[2] +12*x[3] +60*x[4] +20* x[5]+10*x[6]) <= -28)
x_non_negative = (x >= 0)
problem =op(z,[mass1,mass2,mass3,mass4 ,x_non_negative])
problem.solve(solver='glpk')
problem.status
print("Результат:")
print(round(1000*x.value[0],1),'-грамм мяса, затраты -',round(x.value[0]*333,1),'руб.')
print(round(1000*x.value[1],1),'-грамм рыбы, затраты -',round(x.value[1]*308,1),'руб.')
print(round(1000*x.value[2],1),'-миллилитров молока, затраты -',round(x.value[2]*52,1),'руб.')
print(round(1000*x.value[3],1),'-грамм масла, затраты -',round(x.value[3]*400,1),'руб.')
print(round(1000*x.value[4],1),'-грамм сыр, затраты -',round(x.value[4]*450,1),'руб.')
print(round(1000*x.value[5],1),'-грамм крупы, затраты -',round(x.value[5]*56,1),'руб.')
print(round(1000*x.value[6],1),'-грамм картофеля, затраты -',round(x.value[6]*25,1),'руб.')
print(round(problem.objective.value()[0],1),"- стоимость рациона одного человека в день")
stop = time.time()
print ("Время :",round(stop-start,3))
Следует отметить некоторые особенности написания программы с использованием модуля cvxopt. Modeling: все переменные сохраняются в списках, а индексы списков начинаются не с
1, а с
0; в условиях, которые записываются в виде нестрогих неравенств должно
быть установлено ограничение сверху, поэтому, для перехода от ограничения снизу, обе части неравенств умножены на
-1.
Результат:
0.0 -грамм мяса, затраты — 0.0 руб.
0.0 -грамм рыбы, затраты — 0.0 руб.
0.0 -миллилитров молока, затраты — 0.0 руб.
38.0 -грамм масла, затраты — 15.2 руб.
-0.0 -грамм сыр, затраты — -0.0 руб.
679.3 -грамм крупы, затраты — 38.0 руб.
1395.9 -грамм картофеля, затраты — 34.9 руб.
81.1 — стоимость рациона одного человека в день
Время: 0.09
Анализ результатов показывает: ни мяса, ни рыбы- крупа, масло и картофель — вот такое линейное программирование. Вряд ли такой рацион можно рассматривать серьёзно, но для общности анализа пусть будет. А мы продолжим поиск.
Должна ли диета быть калорийной?
Для определённости предположим, что в качестве исходных продуктов рассмотрим хлеб, мясо, сыр, бананы, огурцы, помидоры, виноград – всего семь продуктов. В качестве питательных веществ – белки, жира, углеводы.
Калорийность одной весовой единицы каждого из продуктов следующая: c1=2060, c2=2430, c3=3600, c4=890, c5=140, c6=230, c7=650.
Содержание питательных веществ в продуктах питания поместим в следующую таблицу.
Минимальная суточная потребность человека в питательных веществах следующая: в белках b1=100, в жирах b2=70, в углеводах b3=400.
Не уменьшая общности решаемой задачи, можно считать, что калорийность продуктов измеряется в килокалориях/кг, суточная потребность в питательных веществах – в граммах, а содержание питательных веществ в продуктах– в граммах/кг. В указанных условиях становится возможным выполнить дополнительную проверку сформированных условий задачи на основе рассмотрения физической размерности целевой функции и ограничений.
Обозначив через: x1 –количество хлеба; x2- количество мяса; x3- количество сыра; x4- количество бананов; x5- количество огурцов; x6- количество помидоров; x7- количество винограда, потребляемых человеком в день в килограммах.
Можем составить уравнение общей калорийности F питания в день:
F=2060*x1 + 2430*x2 +3600* x3+890*x4 +140*x5 +230* x6+650*x7
Нам нужно найти минимум F. Суммарное количество белков в рационе человека должно быть не меньше 100 г. Отсюда
61*x1+ 220*x2 +230* x3 +15*x4 +8*x5 +11* x6+6*x7 ≥100
Такие же неравенства составляем для жиров и углеводов. Имеем:
12*x1 +172*x2 +290* x3+1*x4 +1*x5 +2* x6+2*x7 ≥70
420*x1 +0*x2 +0* x3 +212*x4+26*x5 +38* x6+155*x7 ≥400
Решим задачу на Python
from cvxopt.modeling import variable, op
import time
start = time.time()
x = variable(7, 'x')
z=(333*x[0] + 308*x[1] +52* x[2] +400*x[3] +450*x[4] +56* x[5]+20*x[6])
mass1 =(- (180*x[0] + 190*x[1] +30* x[2] +10*x[3] +260*x[4] +130* x[5]+21*x[6]) <= -118)
mass2 =(- (20*x[0] + 3*x[1] +40* x[2] +865*x[3] +310*x[4] +30* x[5]+2*x[6]) <= -56)
mass3 =(- (50* x[2] +6*x[3] +20*x[4] +650* x[5]+200*x[6]) <= -500)
mass4 =(- (9*x[0] + 10*x[1] +7* x[2] +12*x[3] +60*x[4] +20* x[5]+10*x[6]) <= -28)
x_non_negative = (x >= 0)
problem =op(z,[mass1,mass2,mass3,mass4 ,x_non_negative])
problem.solve(solver='glpk')
problem.status
print("Результат:")
print(round(1000*x.value[0],1),'-грамм хлеба')
print(round(1000*x.value[1],1),'-грамм мяса')
print(round(1000*x.value[2],1),'-грамм сыра')
print(round(1000*x.value[3],1),'-грамм бананов')
print(round(1000*x.value[4],1),'-грамм огурцов')
print(round(1000*x.value[5],1),'-грамм помидоров')
print(round(1000*x.value[6],1),'-грамм винограда')
print(round(problem.objective.value()[0],1),"-Калорийность рациона одного человека в день")
stop = time.time()
print ("Время :",round(stop-start,3))
Результат:
0.0 -грамм хлеба
211.5 -грамм мяса
109.4 -грамм сыра
1886.8 -грамм бананов
0.0 -грамм огурцов
0.0 -грамм помидоров
0.0 -грамм винограда
2587.1 -килокалорий -калорийность
рациона одного человека в день
Время: 0.06
Анализ результатов решения показывает, что для удовлетворения суточной потребности в питательных веществах (белки, жиры, углеводы), следует использовать 211 грамм мяса баранины, 109 грамм сыра, 1887 грамм бананов, совсем отказаться от хлеба, огурцов, помидоров и винограда. При этом общая калорийность найденной оптимальной диеты будет равна 2587 килокалорий, что вполне соответствует малоактивному образу жизни без существенных физических нагрузок. Напомним, что согласно медицинским данным, энергетические затраты работников умственного труда (программисты, юристы, врачи, педагоги, бухгалтера) лежат в пределах 3000 килокалорий.
Содержательный анализ результатов задачи об оптимальной диете явно выявляет недостатки рассмотренной математической модели. С одной стороны, для вкусной и питательной пищи не всегда приемлемым оказывается ограниченный рацион продуктов питания, который совершенно игнорирует индивидуальные предпочтения при выборе отдельных продуктов. С другой стороны, найденное оптимальное решение (мясо + сыр + бананы) для многих покажется однообразным и способным повергнуть в уныние даже пациентов больницы. Наконец, рассмотренная математическая модель задачи об оптимальной диете не учитывает суточную потребность в витаминах и микроэлементах, учет которых может существенно повлиять на выбор оптимального состава продуктов.
Что можно предложить заинтересованному читателю?
Заинтересованным читателям данной публикации в качестве упражнения предлагается рассмотреть собственную постановку задачи об оптимальной диете, отражающую их индивидуальные предпочтения в выборе тех или иных продуктов. При этом условия задачи можно несколько изменить, включив в качестве одного из ограничений общую калорийность диеты, а в качестве целевой функции рассмотреть общую массу наиболее предпочтительных продуктов.
Решение задачи на Python (только как пример)
from cvxopt.modeling import variable, op
import time
start = time.time()
x = variable(7, 'x')
z=( x[0] + x[1] +x[2] +x[3] +x[4] +x[5]+x[6])
mass1 =(- (61*x[0] + 220*x[1] +230* x[2] +15*x[3] +8*x[4] +11* x[5]+6*x[6]) <= -100)
mass2 =(- (12*x[0] +172*x[1] +290* x[2] +1*x[3] +1*x[4] +2* x[5]+2*x[6]) <= -70)
mass3 =(- (420*x[0] +0*x[1] +0* x[2] +212*x[3] +26*x[4] +38* x[5]+155*x[6]) <= -400)
mass4 =(-( 2060*x[0] + 2430*x[1] +3600* x[2] +890*x[3] +140*x[4] +230* x[5]+650*x[6]) <= -3000)
x_non_negative = (x >= 0)
problem =op(z,[mass1,mass2,mass3, mass4,x_non_negative])
problem.solve(solver='glpk')
problem.status
print("Результат:")
print(round(1000*x.value[0],1),'-грамм хлеба')
print(round(1000*x.value[1],1),'-грамм мяса')
print(round(1000*x.value[2],1),'-грамм сыра')
print(round(1000*x.value[3],1),'-грамм бананов')
print(round(1000*x.value[4],1),'-грамм огурцов')
print(round(1000*x.value[5],1),'-грамм помидоров')
print(round(1000*x.value[6],1),'-грамм винограда')
print(round(problem.objective.value()[0],1),"-килограмм-общая масса продуктов из \n рациона одного человека в день")
stop = time.time()
print ("Время :",round(stop-start,3))
Результат:
952.4 -грамм хлеба
0.0 -грамм мяса
288.4 -грамм сыра
0.0 -грамм бананов
0.0 -грамм огурцов
0.0 -грамм помидоров
0.0 -грамм винограда
1.2 -килограмм-общая масса продуктов из
рациона одного человека в день
Время: 0.051
Это мне напоминает рацион долгожителей высокогорных районов лепёшки на козьем молоке и сыр того же происхождения, но воспоминания скорее всего обманчивы, поскольку список продуктов явно не оттуда.
Вместо вывода
Несмотря на выявленные недостатки рассмотренной математической модели задачи об оптимальной диете, найденное оптимальное решение в точности соответствует исходной постановке задачи. Это свидетельствует о достаточно высокой точности решения задач линейного программирования при помощи библиотеки cvxopt. Modeling Python.
Интерфейс программы настолько простой и наглядный, что не требует каких-либо дополнительных навыков. Достаточно скачать и установить последнюю версию Python, например, с сайта [1], а библиотеку
cvxopt с сайта [2]. Затем создать файл с расширением
py и поместить в него любую из приведенных в статье программ, предварительно модифицировав её под свою задачу с новой функцией цели и ограничениями.
Ссылки
- Python.
- Windows binaries for python.