Обзор методов создания эмбедингов предложений, Часть 1
- пятница, 14 августа 2020 г. в 00:27:38
Представте себе, как было бы удобно, написать предложение и найти похожее к нему по смыслу. Для этого нужно уметь векторизовать всё предложение, что может быть очень не тривиальной задачей.
По специфике своей работы, я должен искать похожие запросы в службу поддержки и даже имея достаточно большую разметку, бывает тяжело собрать необходимое количество сообщений подходящих по тематике, но написанных другими словами.
Ниже обзорное исследование на способы векторизации всего предложения и не просто векторизации, а попытка векторизовать предложение с учётом его смысла.
Например две фразы 'эпл лучше самсунг' от 'самсунг лучше эпл', должны быть на противоположном конце по одному из значений вектора, но при этом совпадать по другим.
Можно привести аналогию с картинкой ниже. По шкале от кекса до собаки они находятся на разных концах, а по количеству чёрных точек и цвету объекта на одном.
Вот тут сборник статей по векторизации предложений
Методы в статьях очень не тривиальные и интересны для изучения, но минусы в том, что:
Поэтому ниже обзорно — сравнительный анализ 7 разных методов векторизации предложений на одном датасете.
Подготовка
Функция оценки
import pandas as pd
import numpy as np
from collections import defaultdict, Counter
import random
from tqdm.notebook import tqdm
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_distances, euclidean_distances
from sklearn.decomposition import LatentDirichletAllocation
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Input, Bidirectional, LSTM, Dense, MaxPooling1D, AveragePooling1D, Conv1D
from tensorflow.keras.layers import Flatten, Reshape, Concatenate, Permute, Activation, Dropout, multiply
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.losses import cosine_similarity
from tensorflow.keras import regularizers
import tensorflow.keras.backend as K
import tensorflow as tf
import pymorphy2
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
import numpy as np
import matplotlib.pyplot as plt
import pickle
import os
import re
from conllu import parse_incr
Источник знаний и разметки по тематикам
Обяснение на Вики
files = {'train': 'ru_syntagrus-ud-train.conllu',
'test': 'ru_syntagrus-ud-test.conllu',
'dev': 'ru_syntagrus-ud-dev.conllu'}
database = {}
for data_type in files:
filename = files[data_type]
database = {}
with open(os.path.join('UD_Russian-SynTagRus-master', filename), encoding='utf-8') as f:
parsed = parse_incr(f)
for token_list in parsed:
topic_name = token_list.metadata['sent_id'].split('.')[0]
# убрём цифры из названий темы
topic_name = re.sub(r'\d+', '', topic_name)
if topic_name not in database:
database[topic_name] = []
sentence = ' '.join([token['form'] for token in token_list]).lower()
database[topic_name].append(sentence)
Выбираем из базы знаний три темы с примерно равным количество сообщений в них, которые будут использоваться для оценки методов и удалим их из базы знаний.
choosen_for_evaluation = ['I_slepye_prozreyut',
'Interviyu_Mariny_Astvatsaturyan',
'Byudzhet']
texts_for_evaluation = {}
texts_for_training = {}
for topic in database:
if topic in choosen_for_evaluation:
texts_for_evaluation[topic] = database[topic]
else:
texts_for_training[topic] = database[topic]
TEXTS_CORPUS = [sentence for topic in texts_for_training for sentence in texts_for_training[topic]]
# напечатаем примеры
for topic in texts_for_evaluation:
print(topic, len(texts_for_evaluation[topic]))
for index, sentence in enumerate(texts_for_evaluation[topic]):
print('\t', sentence[:100])
if index > 5:
break
print('\n')
Примеры выводов
Byudzhet 70
кандидат исторических наук н. митрофанов .
все медные и серебряные на императорском кону .
екатерина ii и бюджет .
приходит день , и на все лады отовсюду звучит слово " бюджет " .
газеты расшифровывают смысл его основополагающих статей , сравнивая прошлогодние наметки с нынешними
многие возмущаются по поводу малого внимания к культуре , обороне , армии … - продолжайте перечень в
конформисты принимаются разоблачать " выскочек " , уличая их в передергивании процентных долей , в б
Interviyu_Mariny_Astvatsaturyan 72
" моя научная журналистика стоит на царских костях " .
- как вы , биолог , пришли в научную журналистику ? с чего всё начиналось ?
- началось по воле случая , в 1993-м .
одному из тогдашних музыкальных ведущих " эха москвы " понадобились записи ива монтана , и он обрати
у нас дома , сколько я себя помню , лежали виниловые пластинки - концертные записи ива монтана , при
я предоставила их для подготовки радиопередачи об иве монтане .
так я познакомилась с тогдашней редакцией " эха " , которая сидела на никольской , напротив гума .
I_slepye_prozreyut 72
и слепые прозреют …
опыты , проведенные специалистами института мозга человека ран , подтвердили существование у homo sa
три года назад московский ученый вячеслав бронников начал учить слепых видеть .
он разработал оригинальную методику , позволяющую резко активизировать деятельность правого полушари
в результате за десять дней занятий бронников развивал у своих подопечных навыки так называемого пря
дети с пороками зрения после специального обучения могли кататься на велосипедах , играть в шахматы
слепой человек , как утверждают медики , видит перед собой пелену .
Для оценки нужна только одна функция от каждого метода most similar, которая будет принимать целевой сообщение, сообщения, которые надо расставить в порядке убывания близости и индексы этих сообщений, который надо расставить по тому же порядку, что и сообщения.
Баллы будут считаться так: всего 3 темы с 70, 72 и 72 предложениями в каждом. Чем ближе сообщение распологается по отношению к остальным, тем больше баллов за него начисляется. Убываение ценности предложения идёт пропорционально индексу. Т.е. если самое ближайшее сообщение из той же темы, то +214, если второе сообщение из другой темы, то -213 и т.д. до последнего.
Теоретически максимально возможное значение = sum(214… 214 — 72) — sum(214-72… 0) + 7626 = 10395
Теоретически минимально возможное значение = -sum(214… 72) + sum(72… 0) + 7626 = -10053
np.random.seed(42)
random.seed(777)
index2topic = {}
index2text = {}
index = 0
for topic in texts_for_evaluation:
for sentence in texts_for_evaluation[topic]:
index2topic[index] = topic
index2text[index] = sentence
index += 1
def get_similarity_values(sentences):
return np.random.rand(len(sentences), len(sentences))
chart_methods = {}
bottom_minimum = -7626.2336448598135
def evaluate(get_similarity_values, method_name=None, add_to_chart=True):
test_messages = [index2text[index] for index in range(len(index2text))]
distances_each_to_each = get_similarity_values(test_messages)
evaluations = []
for target_index in index2topic:
distances = distances_each_to_each[target_index]
distances_indexes = sorted(zip(distances, range(len(index2topic))), key=lambda x: x[0])
evaluation_result = 0
for i, (distance, index) in enumerate(distances_indexes):
if index2topic[index] == index2topic[target_index]:
evaluation_result += len(test_messages) - i
else:
evaluation_result -= len(test_messages) - i
evaluations.append(evaluation_result)
# сделаем случайное распределние искусственным нулём (baseline)
result = round(np.mean(evaluations) - bottom_minimum, 1)
if add_to_chart:
#добавляем на график, только лучший результат по всем прогонам
if method_name not in chart_methods or result > chart_methods[method_name][0]:
chart_methods[method_name] = (result, np.std(evaluations))
return f'{method_name}: {str(result)}'
def parse_result(result):
return float(new_result.split(': ')[1])
evaluate(get_similarity_values, 'random arrange')
'random arrange: 0.0'
Будем определять расстояни между предложеними по словам, которые находятся в предложении без предварительной обработки (сохраняя все знаки препинания).
count_vectorizer = CountVectorizer()
corpus = TEXTS_CORPUS
count_vectorizer.fit(corpus)
def get_similarity_values(sentences):
sentences_bow = count_vectorizer.transform(sentences)
distances = cosine_distances(sentences_bow, sentences_bow)
return distances
evaluate(get_similarity_values, 'BOW')
'BOW: 693.1'
Тот же алгоритм, но теперь будут использоваться леммы слов.
morph = pymorphy2.MorphAnalyzer()
def lemmatize(corpus, verbose=False):
clear_corpus = []
if verbose:
iterator = tqdm(corpus, leave=False)
else:
iterator = corpus
for sentence in iterator:
tokens = sentence.split() # разбиваем текст на слова
res = []
for token in tokens:
p = morph.parse(token)[0]
res.append(p.normal_form)
clear_corpus.append(' '.join(res))
return clear_corpus
count_vectorizer = CountVectorizer()
corpus = lemmatize(TEXTS_CORPUS, True)
count_vectorizer.fit(corpus)
def get_similarity_values(sentences):
sentences_bow = count_vectorizer.transform(lemmatize(sentences))
distances = cosine_distances(sentences_bow, sentences_bow)
return distances
evaluate(get_similarity_values, 'BOW с леммами слов', False)
'BOW с леммами слов: 1645.8'
ru_stopwords = stopwords.words('russian')
ru_stopwords += ['.', ',', '"', '!',
'?','(', ')', '-',
':', ';', '_', '\\']
def delete_stopwords(corpus, verbose=False):
clear_corpus = []
if verbose:
iterator = tqdm(corpus, leave=False)
else:
iterator = corpus
for sentence in iterator:
tokens = sentence.split() # разбиваем текст на слова
res = []
without_stopwords = [token for token in tokens if token not in ru_stopwords]
clear_corpus.append(' '.join(without_stopwords))
return clear_corpus
count_vectorizer = CountVectorizer()
corpus = lemmatize(delete_stopwords(TEXTS_CORPUS), True)
count_vectorizer.fit(corpus)
def get_similarity_values(sentences):
sentences_bow = count_vectorizer.transform(lemmatize(delete_stopwords(sentences)))
distances = cosine_distances(sentences_bow, sentences_bow)
return distances
evaluate(get_similarity_values, 'BOW с леммами и без стоп слов')
'BOW с леммами и без стоп слов: 1917.6'
def similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=False, do_delete_stopwords=False):
def get_similarity_values(sentences):
if do_delete_stopwords:
sentences = delete_stopwords(sentences)
if do_lemmatize:
sentences = lemmatize(sentences)
sent_vector = count_vectorizer.transform(sentences)
sent_vector = lda.transform(sent_vector)
distances = cosine_distances(sent_vector, sent_vector)
return distances
return get_similarity_values
lda = LatentDirichletAllocation(n_components=300)
corpus = TEXTS_CORPUS
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer)
print(evaluate(get_similarity_values, 'LDA', False))
lda = LatentDirichletAllocation(n_components=300)
corpus = lemmatize(TEXTS_CORPUS, True)
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=True)
print(evaluate(get_similarity_values, 'LDA с леммами', True))
lda = LatentDirichletAllocation(n_components=300)
corpus = lemmatize(delete_stopwords(TEXTS_CORPUS), True)
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=True, do_delete_stopwords=True)
print(evaluate(get_similarity_values, 'LDA с леммами и без стоп слов', False))
LDA: 344.7
LDA с леммами: 1092.1
LDA с леммами и без стоп слов: 1077.2
%matplotlib inline
def plot_results():
methods = sorted(chart_methods.items(), key=lambda x: x[1][0])
labels = [m[0] for m in methods]
x_pos = np.arange(len(labels))
mean = [m[1][0] for m in methods]
std = [m[1][1] for m in methods]
# Build the plot
fig, ax = plt.subplots(figsize=(12,8))
ax.bar(x_pos,
mean,
yerr=std,
align='center',
alpha=0.5,
ecolor='black',
capsize=10)
ax.set_ylabel('Баллы и стандартное отклонение')
ax.set_xticks(x_pos)
ax.set_xticklabels(labels, rotation=20, ha='right')
ax.set_title('Сранительный график методов')
ax.yaxis.grid(True)
plt.show()
plot_results()
Будем использовать предобученные эмбединги и добавим возможность выбирать метод векторизации и фунцию расстояния.
Здесь можно скачать fasttext.
А вот тут ссылка для скачивания и инструкция использования gensim модели word2vec.
# Скачивание предобученных эмбедингов
import fasttext.util
from wikipedia2vec import Wikipedia2Vec
fasttext.util.download_model('ru', if_exists='ignore')
wiki2vec = Wikipedia2Vec.load('ruwiki_20180420_300d.pkl')
ft = fasttext.load_model('cc.ru.300.bin')
def vectorize(token, use_word2vec=True, use_fasttext=True):
assert use_word2vec or use_fasttext
if use_fasttext:
try:
fast_text_vector = ft.get_word_vector(token)
except KeyError:
fast_text_vector = np.zeros((ft.get_dimension()))
if use_word2vec:
try:
word2vec_vector = wiki2vec.get_word_vector(token)
except KeyError:
word2vec_vector = np.zeros((len(wiki2vec.get_word_vector('the'))))
if use_fasttext and use_word2vec:
return np.concatenate([word2vec_vector, fast_text_vector])
elif use_fasttext:
return np.array(fast_text_vector)
elif use_word2vec:
return np.array(word2vec_vector)
else:
return 'something went wrong on vectorisation'
print(np.shape(vectorize('any_token')))
def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
def get_similarity_values(sentences):
sent_vector = []
for sentence in sentences:
sentence_vector = []
for token in sentence.split():
sentence_vector.append(vectorize(token, use_word2vec, use_fasttext))
sent_vector.append(np.mean(sentence_vector, axis=0))
distances = distance_function(sent_vector, sent_vector)
return distances
return get_similarity_values
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, 'среднее по embedings с euclidean_distances с word2vec + fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, 'среднее по embedings с euclidean_distances с fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, 'среднее по embedings с euclidean_distances с word2vec'))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances)
print(evaluate(get_similarity_values, 'среднее по embedings с cosine_distance с word2vec + fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=cosine_distances)
print(evaluate(get_similarity_values, 'среднее по embedings с cosine_distance с fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=cosine_distances)
print(evaluate(get_similarity_values, 'среднее по embedings с cosine_distance с word2vec'))
среднее по embedings с euclidean_distances с word2vec + fast_text: 1833.6
среднее по embedings с euclidean_distances с fast_text: 913.5
среднее по embedings с euclidean_distances с word2vec: 1941.6
среднее по embedings с cosine_distance с word2vec + fast_text: 2278.1
cреднее по embedings с cosine_distance с fast_text: 829.2
среднее по embedings с cosine_distance с word2vec: 2437.7
def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
def get_similarity_values(sentences):
sentences = delete_stopwords(sentences)
sent_vector = []
for sentence in sentences:
sentence_vector = []
for token in sentence.split():
sentence_vector.append(vectorize(token, use_word2vec, use_fasttext))
sent_vector.append(np.mean(sentence_vector, axis=0))
distances = distance_function(sent_vector, sent_vector)
return distances
return get_similarity_values
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, 'среднее по embedings без стопслов с euclidean_distances с word2vec + fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, 'среднее по embedings без стопслов с euclidean_distances с fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, 'среднее по embedings без стопслов с euclidean_distances с word2vec'))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True)
print(evaluate(get_similarity_values, 'среднее по embedings без стопслов с cosine_distance с word2vec + fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True)
print(evaluate(get_similarity_values, 'среднее по embedings без стопслов с cosine_distance с fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False)
print(evaluate(get_similarity_values, 'среднее по embedings без стопслов с cosine_distance с word2vec'))
среднее по embedings без стопслов с euclidean_distances с word2vec + fast_text: 2116.9
среднее по embedings без стопслов с euclidean_distances с fast_text: 1314.5
среднее по embedings без стопслов с euclidean_distances с word2vec: 2159.1
среднее по embedings без стопслов с cosine_distance с word2vec + fast_text: 2779.7
среднее по embedings без стопслов с cosine_distance с fast_text: 2199.0
среднее по embedings без стопслов с cosine_distance с word2vec: 2814.4
tf_idf_vectorizer = TfidfVectorizer()
tf_idf_vectorizer.fit(TEXTS_CORPUS)
vocab = tf_idf_vectorizer.get_feature_names()
def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
def get_similarity_values(sentences):
sent_vector = [[]]*len(sentences)
weights_data = tf_idf_vectorizer.transform(sentences).tocoo()
for row, col, weight in zip(weights_data.row, weights_data.col, weights_data.data):
sent_vector[row].append(weight*vectorize(vocab[col], use_word2vec, use_fasttext))
for row in range(len(sent_vector)):
if not sent_vector[row]:
sent_vector.append((len(vectorize('zoros_vector'))))
sent_vector = np.sum(sent_vector, axis=1)
distances = distance_function(sent_vector, sent_vector)
return distances
return get_similarity_values
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True)
print(evaluate(get_similarity_values,'среднее по embedings с tf-idf с cosine_distance с word2vec + fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True)
print(evaluate(get_similarity_values,'среднее по embedings с tf-idf с cosine_distance с fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False)
print(evaluate(get_similarity_values,'среднее по embedings с tf-idf с cosine_distance с word2vec', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'среднее по embedings с tf-idf с euclidian_distance с word2vec + fast_text', add_to_chart=True))
get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'среднее по embedings с tf-idf с euclidian_distance с fast_text', add_to_chart=False))
get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'среднее по embedings с tf-idf с euclidian_distance с word2vec', add_to_chart=False))
среднее по embedings с tf-idf с cosine_distance с word2vec + fast_text: -133.6
среднее по embedings с tf-idf с cosine_distance с fast_text: 9.0
среднее по embedings с tf-idf с cosine_distance с word2vec: -133.6
среднее по embedings с tf-idf с euclidian_distance с word2vec + fast_text: 6.4
среднее по embedings с tf-idf с euclidian_distance с fast_text: -133.6
среднее по embedings с tf-idf с euclidian_distance с word2vec: -133.6
plot_results()
Следующие несколько моделей потребуют потоковой генерации данных, поэтому сделаем универсальные генераторы.
max_len = 20
min_len = 5
embedding_size = len(vectorize('any token'))
class EmbedingsDataGenerator():
def __init__(self, texts_corpus=TEXTS_CORPUS, min_len=5, max_len=20, batch_size=32, batches_per_epoch=100, use_word2vec=True, use_fasttext=True):
self.texts = texts_corpus
self.min_len = min_len
self.max_len = max_len
self.batch_size = batch_size
self.batches_per_epoch = batches_per_epoch
self.use_word2vec = use_word2vec
self.use_fasttext = use_fasttext
self.embedding_size = len(vectorize('token', use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))
def vectorize(self, sentences):
vectorized_sentences = []
for text in sentences:
text_vec = []
tokens = str(text).split()
for token in tokens:
text_vec.append(vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))
vectorized_sentences.append(text_vec)
vectorized_sentences = pad_sequences(vectorized_sentences, maxlen=self.max_len, dtype='float32')
return vectorized_sentences
def __iter__(self):
for _ in tqdm(range(self.batches_per_epoch), leave=False):
X_batch = []
y_batch = []
finished_batch = False
while not finished_batch:
text = random.choice(self.texts)
tokens = str(text).split()
if len(tokens) < self.min_len:
continue
x_vec = []
for token in tokens:
token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
if len(x_vec) >= self.min_len:
X_batch.append(x_vec)
y_batch.append(token_vec)
if len(X_batch) == self.batch_size:
X_batch = pad_sequences(X_batch, maxlen=self.max_len, dtype='float32')
yield np.array(X_batch), np.array(y_batch)
finished_batch = True
break
x_vec.append(token_vec)
class IndexesDataGenerator(EmbedingsDataGenerator):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.token2index = {}
index = 0
for text in self.texts:
tokens = str(text).split()
for token in tokens:
if token not in self.token2index:
self.token2index[token] = index
index += 1
def __iter__(self):
for _ in tqdm(range(self.batches_per_epoch), leave=False):
X_batch = []
X_batch_indexes = []
y_batch = []
finished_batch = False
while not finished_batch:
text = random.choice(self.texts)
tokens = str(text).split()
if len(tokens) < self.min_len:
continue
x_vec = []
x_tokens = []
for token in tokens:
token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
if len(x_vec) >= self.min_len:
X_batch.append(x_vec)
X_batch_indexes.append(to_categorical(x_tokens, num_classes=len(self.token2index)))
y_batch.append(self.token2index[token])
if len(X_batch) == self.batch_size:
X_batch = pad_sequences(X_batch, maxlen=self.max_len, dtype='float32')
X_batch_indexes = pad_sequences(X_batch_indexes, maxlen=self.max_len, dtype='int32')
y_batch = to_categorical(y_batch, num_classes=len(self.token2index))
yield np.array(X_batch), np.array(X_batch_indexes), np.array(y_batch)
finished_batch = True
break
x_vec.append(token_vec)
x_tokens.append(self.token2index[token])
Если кажтся, что потоковая генерация слишком дорогая, то оцените время, которое занимает генерация 100 батчей с размером батча 32, получается:
data_generator = EmbedingsDataGenerator()
%%timeit
for x, y in data_generator:
pass
448 ms ± 65.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
data_generator = IndexesDataGenerator()
%%timeit
for x_e, x_i, y_i in data_generator:
pass
5.77 s ± 115 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Нейронная сеть угадывает следующее слово в преложении. Предсказание по всей длине текста, является эмбедингом предложения.
Угадывать будем на основании предыдущих слов: максимум 20 и минимум 5.
def similarity_values_wrapper(embedder, vectorizer, distance_function=cosine_distances):
def get_similarity_values(sentences):
sent_vec = vectorizer(sentences)
sent_embedings = embedder(sent_vec)
distances = distance_function(sent_embedings, sent_embedings)
return distances
return get_similarity_values
def model_builder(data_generator):
complexity = 500
inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
X = inp
X = LSTM(complexity, return_sequences=True)(X)
X = LSTM(complexity)(X)
X = Dense(complexity, activation='elu')(X)
X = Dense(complexity, activation='elu')(X)
X = Dense(data_generator.embedding_size, activation='linear')(X)
model = Model(inputs=inp, outputs=X)
model.compile(loss=cosine_similarity, optimizer='adam')
model.summary()
return model
data_generator = EmbedingsDataGenerator(use_fasttext=False)
next_word_model = model_builder(data_generator)
get_similarity_values = similarity_values_wrapper(next_word_model.predict, data_generator.vectorize)
new_result = -10e5
for i in tqdm(range(1000)):
if i%3==0:
previous_result = new_result
new_result = evaluate(get_similarity_values, 'Language Model on embedings')
new_result = parse_result(new_result)
print(i, new_result)
# stopping condition
if new_result < previous_result and i > 20:
break
for x, y in data_generator:
next_word_model.train_on_batch(x, y)
0 1644.6
3 148.7
6 274.8
9 72.3
12 186.8
15 183.7
18 415.8
21 138.9
def model_builder(data_generator):
complexity = 200
inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
X = inp
X = LSTM(complexity, return_sequences=True)(X)
X = LSTM(complexity)(X)
X = Dense(complexity, activation='linear', name='embedding_output')(X)
X = Dense(complexity, activation='elu')(X)
X = Dense(len(data_generator.token2index), activation='softmax')(X)
model = Model(inputs=inp, outputs=X)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
model.summary()
embedder = Model(inputs=inp, outputs=model.get_layer('embedding_output').output)
return model, embedder
data_generator = IndexesDataGenerator()
next_word_model, embedder = model_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)
new_result = -10e5
for i in tqdm(range(1000)):
if i%3==0:
previous_result = new_result
new_result = evaluate(get_similarity_values, 'Language Model on token index')
new_result = parse_result(new_result)
print(i, new_result)
if new_result < previous_result and i > 20:
break
for x_e, x_i, y in data_generator:
next_word_model.train_on_batch(x_e, y)
0 1700.6
3 404.7
6 255.3
9 379.8
12 195.2
15 160.1
18 530.7
21 701.9
24 536.9
plot_results()
продолжение следует...