http://habrahabr.ru/post/227973/
Идея бросать за корму атомные бомбы в
проекте «Орион» оказалась слишком брутальной, но объемы энергии, которые дает реакция ядерного расщепления, не говоря уже о синтезе, крайне привлекательны для космонавтики. Поэтому было создано множество не-импульсных систем, избавленных от проблем с хранением сотен ядерных бомб на борту и циклопических амортизаторов. О них сегодня мы и поговорим.
Ядерная физика на пальцах
Что такое ядерная реакция? Если объяснять очень просто, картина будет примерно следующая. Из школьной программы мы помним, что вещество состоит из молекул, молекулы из атомов, а атомы — из протонов, электронов и нейтронов (есть уровни ниже, но нам хватит и этого). Некоторые тяжелые атомы имеют интересное свойство — если в них попадает нейтрон, они распадаются на более легкие атомы и выпускают несколько нейтронов. Если эти выпущенные нейтроны попадут в находящиеся рядом другие тяжелые атомы, распад повторится, и мы получим цепную ядерную реакцию. Движение нейтронов с большой скоростью означает, что это движение превращается в тепло при замедлении нейтронов. Поэтому атомный реактор — это очень мощный нагреватель. Им можно кипятить воду, полученный пар направить на турбину, и получить атомную электростанцию. А можно нагревать водород и выбрасывать его наружу, получив ядерный реактивный двигатель. Из этой идеи родились первые двигатели — NERVA и РД-0410.
NERVA
История проекта
Формальное авторство (патент) на изобретение атомного ракетного двигателя принадлежит Ричарду Фейнману, согласно его же мемуарам «Вы, конечно же шутите, мистер Фейнман». Книга, кстати, всячески рекомендуется к прочтению. Лос-Аламосская лаборатория стала разрабатывать ядерные ракетные двигатели в 1952 году. В 1955 году Был начат проект Rover. На первом этапе проекта, KIWI, было построено 8 экспериментальных реакторов и с 1959 по 1964 год изучалась продувка рабочего тела сквозь активную зону реактора. Для временнОй привязки, проект «Орион» существовал с 1958 по 1965 год. У «Ровера» были второй и третий этапы, изучавшие реакторы большей мощности, но NERVA базировалась на Kiwi из-за планов первого испытательного пуска в космосе в 1964 году. Сроки постепенно съехали, и первый наземный пуск двигателя NERVA NRX/EST (EST — Engine System Test — тест двигательной системы) состоялся в 1966 году. Двигатель успешно проработал два часа, из которых 28 минут составила работа на полной тяге. Второй двигатель NERVA XE был запущен 28 раз и проработал в общей сложности 115 минут. Двигатель был признан пригодным для космической техники, а испытательный стед был готов к испытаниям новых собранных двигателей. Казалось, что NERVA ждет блестящее будущее — полёт на Марс в 1978, постоянная база на Луне в 1981, орбитальные буксиры. Но успех проекта вызвал панику в Конгрессе — лунная программа оказалась очень дорогой для США, марсианская программа оказалась бы ещё дороже. В 1969 и 1970 годах финансирование космоса серьезно сокращалось — были отменены «Аполлоны»-18,19 и 20, и огромные объемы денег на марсианскую программу никто бы не стал выделять. В итоге работа по проекту велась без серьезной подпитки деньгами и в итоге он был закрыт в 1972 году.
Конструкция
Водород из бака поступал в реактор, нагревался там, и выбрасывался наружу, создавая реактивную тягу. Водород был выбран как рабочее тело потому, что у него легкие атомы, и их проще разогнать до большой скорости. Чем больше скорость реактивного выхлопа — тем эффективнее ракетный двигатель.
Отражатель нейтронов использовался для того, чтобы нейтроны возвращались обратно в реактор для поддержания цепной ядерной реакции.
Управляющие стержни использовались для управления реактором. Каждый такой стержень состоял из двух половин — отражателя и поглотителя нейтронов. Когда стержень поворачивался отражателем нейтронов, их поток в реакторе увеличивался и реактор повышал теплоотдачу. Когда стержень поворачивался поглотителем нейтронов, их поток в реакторе уменьшался, и реактор понижал теплоотдачу.
Водород также использовался для охлаждения сопла, а теплый водород от системы охлаждения сопла вращал турбонасос для подачи новых порций водорода.
Двигатель в работе. Водород поджигался специально на выходе из сопла во избежание угрозы взрыва, в космосе горения бы не было.
Двигатель NERVA создавал тягу 34 тонны, примерно в полтора раза меньше двигателя J-2, стоявшего на второй и третьей ступенях ракеты «Сатурн-V». Удельный импульс составлял 800-900 секунд, что было в два раза больше лучших двигателей на топливной паре «кислород-водород», но меньше ЭРД или двигателя «Ориона».
Немного о безопасности
Только что собранный и не запущенный ядерный реактор с новыми, ещё не работавшими топливными сборками достаточно чист. Уран ядовит, поэтому необходимо работать в перчатках, но не более. Никаких дистанционных манипуляторов, свинцовых стен и прочего не нужно. Вся излучающая грязь появляется уже после запуска реактора из-за разлетающихся нейтронов, «портящих» атомы корпуса, теплоносителя и т.п. Поэтому, в случае аварии ракеты с таким двигателем радиационное заражение атмосферы и поверхности было бы небольшим, и конечно же, было бы сильно меньше штатного старта «Ориона». В случае же успешного старта заражение было бы минимальным или вообще отсутствовало, потому что двигатель должен был бы запускаться в верхних слоях атмосферы или уже в космосе.
РД-0410
Советский двигатель РД-0410 имеет похожую историю. Идея двигателя родилась в конце 40-х годов среди пионеров ракетной и ядерной техники. Как и в проекте Rover первоначальной идеей была атомный воздушно-реактивный двигатель для первой ступени баллистической ракеты, затем разработка перешла в космическую отрасль. РД-0410 разрабатывался медленнее, отечественные разработчики увлеклись идеей газофазного ЯРД (об этом будет ниже). Проект был начат в 1966 году и продолжался до середины 80-х годов. В качестве цели для двигателя называлась миссия «Марс-94» — пилотируемый полёт на Марс в 1994 году.
Схема РД-0410 аналогична NERVA — водород проходит через сопло и отражатели, охлаждая их, подается в активную зону реактора, нагревается там и выбрасывается.
По своим характеристикам РД-0410 был лучше NERVA — температура активной зоны реактора составляла 3000 К вместо 2000 К у NERVA, а удельный импульс превышал 900 с. РД-0410 был легче и компактней NERVA и развивал тягу в десять раз меньше.
Испытания двигателя. Боковой факел слева внизу поджигает водород во избежание взрыва.Развитие твердофазных ЯРД
Мы помним, что чем выше температура в реакторе, тем больше скорость истечения рабочего тела и тем выше удельный импульс двигателя. Что мешает повысить температуру в NERVA или РД-0410? Дело в том, что в обоих двигателях тепловыделяющие элементы находится в твердом состоянии. Если повысить температуру, они расплавятся и вылетят наружу вместе с водородом. Поэтому для бОльших температур необходимо придумать какой-то другой способ осуществления цепной ядерной реакции.
Двигатель на солях ядерного топлива
В ядерной физике есть такое понятие как критическая масса. Вспомните цепную ядерную реакцию в начале поста. Если делящиеся атомы находятся очень близко друг к другу (например, их обжали давлением от специального взрыва), то получится атомный взрыв — очень много тепла в очень небольшие сроки. Если атомы обжаты не так плотно, но поток новых нейтронов от деления растет, получится тепловой взрыв. Обычный реактор в таких условиях выйдет из строя. А теперь представим, что мы берем водный раствор делящегося материала (например, солей урана) и подаем их непрерывно в камеру сгорания, обеспечивая там массу больше критической. Получится непрерывно горящая ядерная «свечка», тепло от которой разгоняет прореагировавшее ядерное топливо и воду.
Идея была предложена в 1991 году Робертом Зубриным и, по различным подсчетам, обещает удельный импульс от 1300 до 6700 с при тяге, измеряющейся тоннами. К сожалению, подобная схема имеет и недостатки:
- Сложность хранения топлива — необходимо избегать цепной реакции в баке, размещая топливо, например, в тонких трубках из поглотителя нейтронов, поэтому баки будут сложными, тяжелыми и дорогими.
- Большой расход ядерного топлива — дело в том, что КПД реакции (количество распавшихся/количество потраченных атомов) будет очень низким. Даже в атомной бомбе делящийся материал «сгорает» не полностью, тут же бОльшая часть ценного ядерного топлива будет выбрасываться впустую.
- Наземные тесты практически невозможны — выхлоп такого двигателя будет очень грязным, грязнее даже «Ориона».
- Есть некоторые вопросы насчет контроля ядерной реакции — не факт, что простая в словесном описании схема будет легкой в технической реализации.
Газофазные ЯРД
Следующая идея — а что, если мы создадим вихрь рабочего тела, в центре которого будет идти ядерная реакция? В этом случае высокая температура активной зоны не будет доходить до стенок, поглощаясь рабочим телом, и её можно будет поднять до десятков тысяч градусов. Так родилась идея газофазного ЯРД открытого цикла:
Газофазный ЯРД обещает удельный импульс до 3000-5000 секунд. В СССР был начат проект газофазного ЯРД (РД-600), но он не дошёл даже до стадии макета.
«Открытый цикл» означает, что ядерное топливо будет выбрасываться наружу, что, конечно, снижает КПД. Поэтому была придумана следующая идея, диалектически вернувшаяся к твердофазным ЯРД — давайте окружим область ядерной реакции достаточно термостойким веществом, которое будет пропускать излучаемое тепло. В качестве такого вещества предложили кварц, потому что при десятках тысяч градусов тепло передается излучением и материал контейнера должен быть прозрачным. Получился газофазный ЯРД закрытого цикла, или же «ядерная лампочка»:
В этом случае ограничением для температуры активной зоны будет термическая прочность оболочки «лампочки». Температура плавления кварца 1700 градусов Цельсия, с активным охлаждением температуру можно повысить, но, в любом случае, удельный импульс будет ниже открытой схемы (1300-1500 с), но ядерное топливо будет расходоваться экономней, и выхлоп будет чище.
Альтернативные проекты
Кроме развития твердофазных ЯРД есть и оригинальные проекты.
Двигатель на делящихся фрагментах
Идея этого двигателя заключается в отсутствии рабочего тела — им служит выбрасываемое отработанное ядерное топливо. В первом случае из делящихся материалов делаются подкритические диски, которые не запускают цепную реакцию сами по себе. Но если диск поместить в реакторную зону с отражателями нейтронов, запустится цепная реакция. А вращение диска и отсутствие рабочего тела приведет к тому, что распавшиеся высокоэнергетические атомы улетят в сопло, генерируя тягу, а не распавшиеся атомы останутся на диске и получат шанс при следующем обороте диска:
Ещё более интересная идея состоит в создании пылевой плазмы (вспомним
«плазменный кристалл» на МКС) из делящихся материалов, в которой продукты распада наночастиц ядерного топлива ионизируются электрическим полем и выбрасываются наружу, создавая тягу:
Обещают фантастический удельный импульс в 1 000 000 секунд. Энтузиазм охлаждает тот факт, что разработка находится на уровне теоретических изысканий.
Двигатели на ядерном синтезе
В ещё более отдаленной перспективе создание двигателей на ядерном синтезе. В отличие от реакций распада ядер, где атомные реакторы были созданы почти одновременно с бомбой, термоядерные реакторы до сих пор не передвинулись из «завтра» в «сегодня» и использовать реакции синтеза можно только в стиле «Ориона» — бросаясь термоядерными бомбами.
Ядерная фотонная ракета
Теоретически можно разогреть активную зону до такой степени, что тягу можно будет создавать, отражая фотоны. Несмотря на отсутствие технических ограничений, подобные двигатели на текущем уровне технологии невыгодны — тяга будет слишком маленькой.
Радиоизотопная ракета
Вполне рабочим будет ракета, нагревающая рабочее тело от РИТЭГа. Но РИТЭГ выделяет сравнительно мало тепла, поэтому такой двигатель будет очень малоэффективным, хотя и очень простым.
Заключение
На текущем уровне технологии можно собрать твердотельный ЯРД в стиле NERVA или РД-0410 — технологии освоены. Но такой двигатель будет проигрывать связке «атомный реактор+ЭРД» по удельному импульсу, выигрывая по тяге. А более продвинутые варианты есть пока только на бумаге. Поэтому лично мне более перспективной кажется связка «реактор+ЭРД».
Источники информации
Главный источник информации — английская Википедия и ресурсы, указанные в ней как ссылки. Как ни парадоксально, но любопытные статьи по ЯРД есть на Традиции —
твердофазный ЯРД и
газофазный ЯРД. Статья про двигатели на
делящихся фрагментах и пылевой плазме.