Подозреваю, что многие здешние читатели начинали своё знакомство с компьютерно-вычислительной техникой вовсе не с планшета, смартфона, ПК или какой-нибудь Денди, а с самого обычного микрокалькулятора. Не инженерного и не программируемого. Плюс, минус, равно.
Конечно, многие всю жизнь вполне успешно пользуются основными функциями этих устройств чисто интуитивно, но возможно не знают про некоторые другие. И тем более мало кто задумывается, как вообще сформировался подобный, понятный без всяких инструкций, дружественный к человеку интерфейс, и почему те или иные клавиши оказались обозначены именно таким образом.
Бывшие однажды чудом техники, сегодня калькуляторы в формате отдельных устройств играют всё меньшую роль в нашей жизни. И пока вычисления как процесс не успели превратиться в диалог с чат-ботом, давайте вспомним, как пользоваться обычным калькулятором, чтобы не разучиться считать самостоятельно.
▍ Настольный вычислитель
Уже прикидываете, насколько же низко пал Хабр, чтобы выбирать подобные темы для статей? Попробуйте задействовать в своих расчётах первый в мире карманный микрокалькулятор с дисплеем на сжиженных кристаллах, Sharp EL-805 выпуска 1973 года, или же его клон, по совместительству первый советский карманный микрокалькулятор Электроника Б3-04 выпуска 1974 года.
Sharp EL-805 и его злой брат-близнец
Это предложение призвано напомнить вам очевидную, но так легко ускользающую истину, что привычные вещи не всегда были такими, какие они есть сейчас. И однажды в истории случился момент, когда была придумана даже такая простейшая и привычная вещь, как кнопка «равно» на клавиатуре калькулятора. А до этого приходилось как-то справляться без неё.
Но всё же начнём сначала. Не будем возвращаться к истокам слишком глубоко, опустим длительную историю стремления человечества к созданию счётной машины, со всеми её шестерёнками, колёсиками и ручками. Отметим лишь момент появления нажимающихся клавиш на механических счётных устройствах в 1887 году, так как он был критичным для формирования современного способа взаимодействия с подобными приборами.
ANITA Mark VIII
Более подходящей нам точкой отсчёта станет создание первой в мире полностью электронной настольной счётной машины, тёплой ламповой (190 ламп и 1 транзистор) британской ANITA, вышедшей сразу в двух немного различающихся версиях, Mark VII и VIII, в 1961 году.
Так как это было первое в мире подобное устройство, и никто ещё не знал, какими должны быть электронные счётные машины, пользовательский интерфейс слегка отличался от того, к чему мы привыкли сегодня. Он гораздо больше похож на старый кассовый аппарат, и это неудивительно, ведь калькулятор проектировался как аналог механических устройств того же производителя.
Интерфейс этого чуда техники состоит из основного цифрового поля операнда, состоящего из десяти столбцов по десять кнопок, дополнительного столбца множителя из десяти кнопок, двенадцати маленьких кнопочек десятичной точки под основным цифровым полем, четырёх командных переключателей, и ещё нескольких дополнительных кнопок.
Интерфейс ANITA Mark VIII
Кнопки основного цифрового поля вводят цифру от 0 до 9 в один из десяти разрядов операнда. То есть каждому разряду соответствует по 10 кнопок. Причём эти кнопки не простые, а с электромагнитной фиксацией: в режиме сложения и вычитания они просто нажимаются и отпускаются, а в режиме деления и умножения залипают после нажатия до получения результата.
Для установки десятичной точки нажимаются соответствующие маленькие кнопочки между разрядами, или специальная кнопка, указывающая на отсутствие десятичной точки.
Четыре переключателя слева внизу устанавливают режим счёта: сложение, вычитание, умножение или деление. Это клавиши с фиксацией, машина всегда остаётся в выбранном режиме, пока не будет выбран другой.
Чтобы сложить или вычесть числа, нужно выбрать переключателем соответствующий режим, после чего можно вводить нужные значения. Изменения на табло происходят моментально по мере набора цифр, что совершенно не соответствует нашим нынешним привычкам. Например, если вам нужно сложить 128 и 32, нужно:
- Включить режим сложения.
- Нажать крайнюю правую клавишу десятичной точки, чтобы работать с целыми числами.
- Набрать на клавиатуре цифры первого числа. Порядок набора разрядов и начальный разряд не имеют значения. Иначе говоря, нужно нажать в каком-то столбце 1, правее него 2, и потом ещё правее 8, и сделать это можно в любом порядке. Кнопки отщёлкиваются после их нажатия.
- Набрать на клавиатуре таким же образом 32. Цифры меняются сразу же в момент нажатия.
- Можно продолжить серию сложений, вводя таким же образом любые последующие слагаемые.
Если при вводе второго числа набрать сначала 3, получится промежуточный результат 158, а потом нажатие двойки в последнем разряде изменит его на 160. Если набрать сначала 2, получится промежуточный результат 130, а потом нажатие тройки изменит его на 160.
Умножение и деление выполняются совершенно иначе. Я не буду пересказывать весьма объёмную инструкцию, описывающие все возможные способы работы с машиной, и продемонстрирую местные обычаи на примере процедуры простейшего умножения двух чисел:
- Включить режим умножения.
- Ввести множимое в основном поле цифр, начиная с крайнего левого столбца, при необходимости используя в нужный момент соответствующую столбцу десятичную точку. Нажатые клавиши при этом залипают.
- Ввести множитель в столбце множителя по одной цифре, начиная со старшего разряда, нажимая в нужный момент его десятичную точку. Результат на табло меняется по мере ввода цифр множителя.
Для деления процедура похожа, но имеет отличие. Делимое вводится таким же образом, как и множимое. Делитель вводится кнопками множителя. После этого кнопкой десятичной точки множителя выставляется нужная десятичная точка делителя. Для получения результата нужно нажать кнопку 0 в столбце множителя, машина призадумается и выдаст результат.
Такая хитроумная система, хотя и вряд ли является интуитивно понятной, позволяет выполнять все базовые операции и некоторые полезные в реальной жизни вычислительные трюки, часть из которых осталась доступна и в современных калькуляторах, а некоторые исчезли. Например, перемножение ряда чисел на общий множитель (константу).
Также в этой машине предусмотрена совершенно чудесная функция: сверка результата. Для этого предусмотрена особая кнопка и ряд процедур, различающихся для разных типов вычислений. Процедура для сложения и вычитания применима и в наши дни: в конце сложения или вычитания переходим в противоположный ему режим (вычитания или сложения) и вводим всю серию чисел заново, получая в итоге 0.
▍ Меньше кнопок
Как вы понимаете, сделать микрокалькулятор из прибора, подобного ANITA Mark VIII, было бы затруднительно не только по причине огромного количества ламп внутри, но и из-за такого весьма многокнопочного интерфейса.
Помимо грандиозных успехов в микроэлектронике, которые не заставили себя долго ждать, для миниатюризации требовалось создать более простую и компактную систему пользовательского ввода, и по возможности более удобную. Это было необходимо сделать и для удешевления, а следовательно и массового внедрения этих машин.
В 1965 году появляется настольный калькулятор Toshiba BC-1411 «Toscal». Всё ещё большой, но теперь уже на холодных и бездушных транзисторах (286 штук), хотя и с тёплыми ламповыми газоразрядными индикаторами. Его клавиатура содержит значительно меньше клавиш, и на первый взгляд напоминает клавиатуры современных калькуляторов. Если сильно не присматриваться.
Реклама Toshiba BC-1411
Цифры тут вводятся привычным способом, последовательным нажатием цифровых клавиш и клавиши десятичной точки. Некоторые сложности возникают с действиями: отдельная кнопка равенства не предусмотрена, она совмещена со сложением.
Эта машина, как и многие другие современные ей, используют иную логику работы, о которой я расскажу более подробно чуть позже. В случае с этой машиной всё довольно похоже на современный способ работы, только вместо отдельной кнопки равенства для получения результата вычитания, умножения и деления после ввода второго числа нужно нажимать «плюс-равно».
В остальном же работа с калькулятором уже гораздо ближе к современным представлениям. Такие обозначения клавиш сохранились и по сей день, а логика работы применялась во многих последующих калькуляторах ещё добрый десяток лет.
Отдельного внимания заслуживает блок кнопок слева. В этом калькуляторе реализован регистр памяти, возможно впервые, а может быть среди первых. Так или иначе, к этому времени никаких общепринятых обозначений и устоявшихся процедур для работы с памятью предусмотрено не было, и инженеры изобретали как могли.
- Клавиша M (Memory) копирует текущий результат в регистр памяти.
- Клавиша AM (Add Memory) на самом деле не клавиша, а переключатель: когда он включён, результаты умножения и деления прибавляются к значению в регистре памяти и сохраняются там.
- Клавиша R (Read) копирует значение из регистра памяти в текущий результат.
Очистка регистра памяти конструкцией не предусмотрена. Зато предусмотрен режим работы с процентами. Это тоже переключатель. Когда он активен, второй операнд в операциях деления и умножения автоматически делится на 100 перед вычислением результата.
Помимо кнопок, у BC-1411 есть переключатель с позициями 0, 3 и 6. Дело в том, что эта машина имеет фиксированную точность вычислений, а переключатель устанавливает количество разрядов после запятой. Почему японцы выбрали именно такие значения, история умалчивает. Прочие же страны в своих разработках при необходимости внедрения фиксированной разрядности предпочитали вариант 0, 2 и 4 — так удобнее считать деньги.
▍ Почти в кармане
Всего несколько лет понадобилось лучшим умам человечества, и уже в 1967 году в недрах американской Texas Instruments родился первый почти карманный, весом всего один килограмм, калькулятор на интегральных микросхемах, Cal-Tech.
Этот аппарат был способен к стандартным четырём действиям с плавающей точкой и не имел никаких других функций. Кнопочный интерфейс сделал очередной небольшой шажок и стал ещё больше похож на современный интерфейс.
Один из прототипов Cal-Tech
Почти никаких странностей, не считая не совсем понятных клавиш C, E и P. За отсутствием в природе мануала их назначение мне неизвестно, как и точная процедура проведения вычислений, реализованная в железе или хотя бы предполагаемая.
Cal-Tech так и остался в формате нескольких прототипов, так как был довольно-таки большим и отображал результат счёта не на дисплее, а на бумажной ленте с помощью встроенного термопринтера. Но в 1970 году на его основе был создан японский Canon Pocketronic. Хотя его дизайн был улучшен, а вес уменьшен, необычное решение с бумажной лентой сохранилось.
Canon Pocketronic
Как ни странно, но в серийном калькуляторе только что оптимизированный интерфейс снова сделал шаг в сторону. Кнопок стало побольше, предыдущие три непонятные кнопки исчезли, зато появились не совсем обычные обозначения: C, CI, и «равно» с ромбиком: это одно из первых появлений самостоятельной кнопки получения результата, но действует она пока ещё немного иначе.
Первые две кнопки — сброс и отмена ошибочно введённого значения, последняя — собственно получение результата. Процедура счёта интуитивно понятна и очень похожа на современную: просто вводятся цифры и арифметические операции, как если бы они записывались на бумаге. При этом они, включая знаки операций, печатаются на ленте.
Нажатие клавиши с ромбиком предположительно печатает знак равенства и результат. Впрочем, инструкция предлагает перед получением равенства в сложениях и вычитаниях нажимать кнопку сложения или вычитания ещё раз.
▍ Арифметическая логика
Пока Cal-Tech пытался добраться до рынка, в 1969 году успевает появиться уже довольно компактный, хотя всё ещё настольный, японский калькулятор QT-8D Micro Compet производства Sharp. В его интерфейсе также наблюдаются довольно значительные флуктуации, но за исключением некоторых занимательных особенностей, он реализует и многие из привычных ныне решений.
Sharp QT-8D
Среди этих решений:
- Восьмиразрядный дисплей, но 16-разрядный регистр счёта. Вручную можно ввести 8 разрядов.
- Если результат превышает разрядность дисплея, отображается его старшая часть, остальные разряды теряются.
- Если целая часть дробного числа больше разрядности дисплея, положение десятичной точки сохраняется и учитывается в последующих операциях.
- Для отрицательных результатов отображается минус в старшем разряде.
- Если при выполнении операции превышена разрядность счёта (получилось больше 16 разрядов), ввод прекращается и загораются все десятичные точки до нажатия кнопки сброса. Это аналог буквы E в современных калькуляторах.
Необычной особенностью QT-8D является отсутствие обнуления счётного регистра при включении: показывается не 0, а случайное число, и требуется вручную сделать обнуление. При этом кнопка сброса работает как отмена неправильного ввода, то есть аналогично кнопке CE на современных калькуляторах. Для полного сброса нужно нажимать кнопку C дважды.
Вычисления здесь выполняются всё ещё не интуитивно понятно, способ их выполнения отличается от привычного современного. Здесь реализована так называемая (в литературе тех лет) «арифметическая» логика.
Есть три клавиши: «плюс-равно», «минус-равно» и «умножить-делить». Нажатие «плюс-равно» и «минус-равно» действует как сложение и вычитание, сразу же выдающее результат. Отдельной кнопки для получения результата не предусмотрено.
Например, для сложения 100 и 500 нужно ввести:
- Сброс, сброс (на дисплее 0).
- 100.
- «плюс-равно» (складывает 0 и 100, на дисплее 100).
- 500.
- «плюс-равно» (складывает 100 и 500, на дисплее 600).
Однако, для вычитания 100 из 500 нужно ввести:
- Сброс, сброс (на дисплее 0).
- 500.
- «плюс-равно» (складывает 0 и 500, на дисплее 500).
- 100.
- «минус-равно» (вычитает 100 из 500, на дисплее 400).
Для деления, умножения используется несколько иная процедура. Например, умножить 12 на 7:
- Сброс, сброс.
- 12.
- «умножить-делить».
- 7.
- «плюс-равно».
Для деления 12 на 7 в конце нужно нажать «минус-равно» вместо «плюс-равно».
Такая же логика работы с небольшими вариациями свойственна многим калькуляторам тех лет, в том числе и упомянутым в самом начале статьи Sharp EL-805 и Электронике Б3-04.
▍ Всегда с тобой
Ещё через несколько лет, в 1971 году, наконец-то появляется первый действительно карманный калькулятор: японский Busicom «Handy» LE-120A. Он построен на специализированной интегральной микросхеме, содержащей 2100 транзисторов, обладает 12-разрядным светодиодным сегментным индикатором. Как и у QT-8D, на клавиатуре всё ещё есть некоторые рудименты, но теперь их меньше, а пользовательский опыт очень близок к современному.
Busicom Handy-LE
Здесь мы снова видим кнопку «плюс-равно», а также загадочный переключатель: 0, 2, 4. Логика работы этой кнопки и переключателя аналогичны BC-1411: эта модель калькулятора тоже имеет фиксированную точность вычислений: целые числа, два или четыре разряда после запятой. Два разряда после запятой оказались более востребованы для применения в реальном мире, чем три у Toshiba: например, для счёта центов или копеек, и японцы учли эти соображения.
Таким образом, в начале 1970-х годов способ управления микрокалькуляторами почти устаканился. Остался последний шажок: отдельная клавиша равенства и современная схема обозначений, и у нас получится современная, так называемая «алгебраическая» логика работы: как вычисление проговаривается вслух, так оно и набирается на клавишах. Например, «два плюс три равно».
Трудно сказать, где впервые появились все эти признаки. В 1971 году на рынке уже было представлено несколько таких калькуляторов, но ещё несколько лет выходили и модели с арифметической логикой и другими, более сложными схемами управления. Потребовалось время, чтобы расставить всё по местам, и какое управление наиболее удобно для конечных пользователей.
TI-2500 первой версии
Вероятно, на роль флагмана популяризации «алгебраической» логики в интерфейсе стоит назначить Texas Instruments 2500 «Datamath» 1972 года, так как именно он оказался первым весьма успешным калькулятором такого типа. Опередившие его в деле выделения отдельной клавиши равенства более ранние коллеги, например, германский Walther ETR3, далеко не так хорошо известны миру.
Впрочем, первая версия Datamath всё ещё имела странность: кнопка CE/D вместо заменившей её во второй ревизии привычной CE. Дело в том, что в первой ревизии отображаемый на дисплее результат исчезал через 15 секунд после последней операции, остаётся светиться только первая цифра. Нажатие CE/D возвращает последние показания на дисплей.
▍ Исторический сдвиг
Далее история развивается слишком стремительно и вскоре уводит нас от предмета интереса:
- Уже в 1968 году появляется первый программируемый калькулятор, Hewlett-Packard HP-9100A. Пока он ещё транзисторный и настольный, больше похожий на компьютер.
- В 1972 году выходит первый карманный инженерный (научный) калькулятор HP-35, а в 1974 конкурирующий продукт от Texas Instruments, SR-50.
- В 1974 году возникает первый карманный программируемый калькулятор Hewlett-Packard HP-65.
- В 1984 году выходит в свет первый электронный органайзер, Psion Organizer 1. Позже эти устройства примут форму более привычных записных книжек Casio, если кто-то ещё помнит про такой формат устройств.
- В 1985 году на рынок прибывает первый графический калькулятор Casio FX-7000G.
Ну а потом пошло-попёрло: ноутбуки, субноутбуки, коммуникаторы, КПК, мобильные телефоны и так далее. Эту историю вы уже наверняка знаете.
Общие черты этого процесса можно обозначить как стремительный рост количества клавиш, потом введение двойного и тройного назначения клавиш, а потом появление цвета и тачскринов.
HP-9100A
На этом моменте часть устройств пошла в сторону отказа от клавиш вовсе и введения многофункциональности, где калькулятор является лишь одной небольшой функцией из множества, а классические клавишные калькуляторы вернулись к своей наиболее оптимальной простой форме родом из 1980-х годов. Программируемые, научные и графические калькуляторы частично вошли в симбиоз и закуклились в своей особой образовательной нише. Из новинок в этой довольно консервативной области случилось разве что появление специализированных устройств для бухгалтерского учёта, с соответствующими дополнительными функциями.
Из всех этих событий можно отметить момент введения в интерфейсы калькуляторов клавиш двойной функциональности. Во многих ранних микрокалькуляторах сами кнопки не имели надписей, вместо этого их обозначения нанесены на корпус. Позже нормой стали обозначения на самих кнопках, но не на корпусе. Так или иначе, каждая кнопка всегда выполняла одно действие, максимум два похожих при повторном нажатии (включение и сброс, отмена ввода и сброс).
HP-35, SR-50A, HP-65
И большой и сложный HP-9100A, и маленькие продвинутые HP-35 вместе с SR-50 придерживались этой схемы — одна кнопка, одна функция. А вот маленький и сложный HP-65 уже имеет до четырёх функций на одной кнопке: основное, указанное на лицевой части кнопки, второе, указанное синим цветом на скошенной части кнопки, и третье, нанесённое жёлтым цветом на корпусе.
Активируются альтернативные функции кнопок не так, как регистр («шифт») на печатной машинке или компьютере — не одновременным нажатием, а последовательностью: сначала однократно нажимается одна из трёх кнопок: жёлтых f и f⁻¹ или синей кнопки g, а потом кнопка с нужной функцией.
Странная кнопка f⁻¹ обозначает инверсию вызываемой функции, и применяется к некоторым функциям: последовательность нажатий f и 4 вызывает функцию синуса, а f⁻¹ и 4 вызывает функцию инверсного синуса. В последующих калькуляторах такая необычная схема доступа к инверсным функциям уже не встречалась.
Клавиатура HP-65
Не берусь утверждать, что это самая первая реализация подобной схемы, однако довольно ранняя и выразительная. Впоследствии она легла в основу управления всеми инженерными, программируемыми и графическими калькуляторами.
Другим встречающимся ныне способом доступа к вторичным функциям кнопок является долгое удержание. Признаком этого является указание наличия второй функции при отсутствии кнопки, подобной F или MODE.
▍ Кнопки классические
Узнав, как мы докатились до жизни такой, давайте разберёмся, что обозначают буквы и значки на кнопках более-менее современных калькуляторов.
Удивительно, но обозначения всех основных операций устоялись в самом начале, и найти какую-нибудь модель, отклоняющуюся от этой схемы, очень непросто.
Клавиши простейшего современного калькулятора
Плюс и минус, будучи максимально классическими операциями, всюду обозначаются одинаково, за отсутствием альтернатив.
В отличие от них, операция умножения исторически имела несколько различных обозначений. В современном мире чаще всего можно встретить точку (в печати) или звёздочку (на компьютерах). Точка была введена в оборот Лейбницем в 1698 году, чтобы не путать знак умножения с иксом. На калькуляторах же выбрано максимально классическое обозначение — косой крестик, появившийся в 1631 году.
Знак деления также имел несколько вариантов. Для калькуляторов был выбран более современный (1651) значок, чем его аналоги в лице двоеточия и косой черты. По научному он называется «обелюс» и символизирует традиционное изображение дроби: точка сверху — делимое, черта, точка снизу — делитель.
Таким образом мы получаем стандартный набор клавиш, имеющих прямое отношение к арифметике:
С другими, так сказать, служебными клавишами, всё немного сложнее. Обычно их обозначения являются сокращениями от описывающих их действие английских слов, но слова эти могут быть разными в зависимости от фантазии инженеров и дизайнеров.
Чаще всего на калькуляторах можно встретить следующие клавиши:
Отдельная тема — обозначение операций с регистром памяти. Здесь могут быть разночтения не только в обозначениях, но и в логике работы. В основном это касается очистки регистра и извлечения его значения: это могут быть раздельные кнопки или одна общая.
▍ Кнопки советские
У Союза нерушимых был свой особый путь. Как и клавиши клавиатур советских ЭВМ, загадочные обозначения на кнопках советских калькуляторов нередко навевают мысли о пульте управления атомным реактором и опасности необдуманных нажатий. Страшно, очень страшно. Но мы узнаем, что это такое.
Особых обозначений, касающихся совершенно обычных калькуляторов, было изобретено немало. При этом мне не попадалось источника, где эти сокращения были бы расшифрованы. Всюду в инструкциях описывается действие клавиши общими словами. Иногда встречается странная терминология, например, «гашение» числа, а не сброс (но клавиша обозначается С).
Клавиатура калькулятора «Электроника МК44»
За исключением основных клавиш, обозначения которых совпадают с зарубежными образцами, на советских калькуляторах можно встретить следующие обозначения:
Операции с регистром памяти на некоторых изделиях могут обладать расширенным функционалом: может присутствовать кнопка обмена значений между памятью и дисплеем, или переноса одного в другое.
Калькулятор МК-44 предлагает два регистра памяти и соответствующие им клавиши СП1, СП2, П1-, П2-, П1+, П2+, действующие аналогично СП, П-, П+.
В калькуляторе МК-59, ориентированном на экономическо-бухгалтерские вычисления, также предусмотрены другие дополнительные функции:
▍ Кнопки бухгалтера
Относительно новым словом в мире калькуляторов являются специализированные модели для бухучёта, получившие довольно широкое распространение на протяжении 2000-х годов. Эти устройства являются прямым развитием обычных калькуляторов.
Клавиатура современного бухгалтерского калькулятора
На них нет никаких кнопок двойного назначения и синусов-косинусов, но есть немало новых интересных, порой довольно загадочных кнопок: для использования дополнительного регистра памяти, расчёта налогов, и тому подобного. Помимо кнопок, дисплей снабжён набором дополнительных иконок, нужных для отображения истории вычислений и разнообразных режимов.
Дополнительные символы на дисплее
Все эти новые функции уже не особо-то интуитивно понятны. Найти для них инструкцию не так-то просто, и обычно эти инструкции даже не пытаются что-то объяснить. Поэтому нижеследующий краткий обзор наиболее часто встречающихся сейчас функций имеет шанс быть даже практически полезным.
Операции памяти на бухгалтерских калькуляторах могут быть более развитыми:
Следующие кнопки присутствуют в моделях калькуляторов, умеющих запоминать шаги в цепочке вычислений, произошедших с момента сброса. Такие модели также показывают номер шага на дисплее отдельной маленькой циферкой и операцию для этого шага соответствующей иконкой:
Также на некоторых моделях подобных калькуляторов реализован режим вычислений с константой. Для входа в него нужно ввести константу и дважды нажать нужную арифметическую операцию, то есть «плюс, плюс», «минус, минус», «умножить, умножить» или «делить, делить». На дисплее появится буква К.
Помимо дополнительных клавиш, на бухгалтерских калькуляторах часто присутствуют переключатели выбора точности вычислений и режима округления, подобные ранним моделям конца 1960-х годов. Только теперь это уже не технологическое ограничение, а полезная для практических задач функция. Среди режимов округления могут присутствовать округление вверх, вниз, и в ближайшую сторону.
▍ Как считать
Прежде чем закончить, наконец, экзекуцию, давайте же вспомним, как считать на этих наших микрокалькуляторах. К слову, ещё в мои школьные годы этому была посвящена пара страниц в учебнике математики, где упоминались тогда уже древние советские калькуляторы. Есть такие страницы и в более современных учебниках.
Страница учебника математики для 3 класса, 2012 год
В современных калькуляторах повсеместно используется простая, интуитивно понятная схема управления и стандартный набор операций. При этом процедура унифицирована для всех операций, не нужно запоминать отличия сложения от деления.
Скорее всего, даже столкнувшись с калькулятором впервые, зная основы арифметики, вы справитесь с его использованием без всяких подсказок — просто набирая нужные вам математические выражения так, как они проговариваются вслух. Нужно, однако, учитывать, что в калькуляторах не предусмотрена система алгебраических приоритетов, все операции выполняются строго последовательно.
Для начала вычислений нужно включить калькулятор клавишей ON или очистить результат предыдущих вычислений клавишей C или AC. Теперь, когда дисплей показывает 0, можно вводить первый операнд, поочерёдно нажимая соответствующие кнопки прямо так, как пишется или проговаривается нужное число, от старшего разряда к младшему. Помимо цифровых клавиш 0..9 можно использовать кнопку десятичной точки, а также кнопку отрицательного числа.
Далее можно нажать одну из кнопок нужной арифметической операции. Результат на экране пока не изменится. Теперь можно вводить второй операнд.
Если при вводе операнда допущена ошибка, можно нажать клавишу CE. Текущий ввод обнулится, но первый операнд и операция сохранятся. Сейчас можно передумать и ввести другой операнд. Однако, выбрать другую операцию уже нельзя.
Для получения результата можно нажать либо клавишу равенства, либо клавишу следующей арифметической операции, которую нужно будет выполнить с этим результатом. После нажатия того или другого появится текущий результат.
Многократное нажатие равенства повторяет предыдущую операцию. Уверен, многие баловались с этой особенностью калькуляторов в детстве, вводя
+ 1, чтобы получить растущий с каждым нажатием = счётчик. У этой особенности есть и практическая польза. Например, с её помощью можно осуществить возведение 3 в 5-ую степень:
3 * 3 = = = =.
Помимо базовой арифметики, у всех современных калькуляторов стандартно предусмотрены клавиша процента и корня, а также работа с одной ячейкой памяти.
Уж не знаю, зачем всем так сильно нужен этот корень в повседневной жизни, но с ним всё просто: при нажатии клавиши будет извлечён корень из числа, которое в данный момент отображается на экране.
Много сомнений вызывает логика работы кнопки %. На самом деле всё просто: вводится число, операция, число процентов, клавиша процента. Например, 125 + 3 %, к числу 125 будет прибавлено 3 процента от 125. Результат 128.75. Или нужно узнать, сколько будет 18 процентов от 50:
50 * 18 %, результат 9.
Операции с памятью в наше время чаще всего представлены кнопкой совмещённого извлечения регистра памяти и его очистки (MRC), а также кнопкой прибавления текущего результата к содержимому памяти (M+) или вычитания результата из содержимого в памяти (M-). Первое нажатие MRC вызывает хранящееся в регистре памяти значения на экран, а повторное — очищает регистр.
Кнопки памяти могут быть полезны не только в накоплении итога, но и в чуть более сложных вычислениях. Например, корень 3 во второй степени плюс 4 во второй степени:
3 * 3 M+ 4 * 4 M+ MRC корень
В ранних калькуляторах особое внимание уделялось операциям с последовательностями чисел: серии последовательных умножений или делений, а также умножению и делению на константу: первый операнд задаётся однократно, далее вводится серия вторых операндов. В большинстве современных простых калькуляторов последняя возможность утрачена, но она сохранилась в бухгалтерских вариантах и в научных моделях.
И немного «еггогологии». Другая любимая многими забава из детства — заставить калькулятор показать сообщение об ошибке. Это происходит, когда переполняется разрядность вычислений, в современных калькуляторах обычно равная целому числу с разрядностью, совпадающему с количеством цифр, помещающихся на дисплее.
Заветная буковка E
Достаточно набрать максимум девяток плюс 1, нажать равно, и увидеть заветную буковку E в углу экрана. На что стоит обратить внимание — в этом режиме калькулятор таки покажет результат, но с потерей последнего знака и отделяя новый старший разряд точкой. Если же в разрядность не умещается дробное число, вместо ухода в ошибку калькулятор будет постепенно отбрасывать младшие разряды.
В некоторых калькуляторах нажатие кнопки C после ухода в ошибку вместо сброса приводит к пропаданию буквы E и даёт возможность продолжить вычисления с текущими показаниями. Но такая особенность встречается нечасто.
▍ Заключение
Я намеренно избегал обсуждения инженерных, программируемых и графических калькуляторов, потому что всё это — целые отдельные миры со своей историей и традицией. А значит, и потенциальная тема для будущих рассказов.
Telegram-канал со скидками, розыгрышами призов и новостями IT 💻