https://github.com/ddPn08/Lsmith
StableDiffusionWebUI accelerated using TensorRT
git clone https://github.com/ddPn08/Lsmith.git
cd Lsmith
git submodule update --init --recursive
docker-compose up --build
Data such as models and output images are saved in the docker-data
directory.
There are two types of Dockerfile.
Dockerfile.full | Build the TensorRT plugin. The build can take tens of minutes. |
Dockerfile.lite | Download the pre-built TensorRT plugin from Github Releases. Build times are significantly reduced. |
You can change the Dockerfile to use by changing the value of services.lsmith.build.dockerfile
in docker-compose.yml.
By default it uses Dockerfile.lite
.
git clone https://github.com/ddPn08/Lsmith.git
cd Lsmith
git submodule update --init --recursive
cd Lsmith
cd frontend
pnpm i
pnpm build --out-dir ../dist
ex.)
bash launch.sh --host 0.0.0.0
git clone https://github.com/ddPn08/Lsmith.git
cd Lsmith
git submodule update --init --recursive
cd frontend
pnpm i
pnpm build --out-dir ../dist
launch-user.bat
Once started, access <ip address>:<port number>
(ex http://localhost:8000
) to open the WebUI.
First of all, we need to convert our existing diffusers model to the tensorrt engine.
Model ID
(ex: CompVis/stable-diffusion-v1-4
)HuggingFace Access Token
(required for some repositories).
Access tokens can be obtained or created from this page.Build
button to start building the engine.
Special thanks to the technical members of the AI絵作り研究会, a Japanese AI image generation community.
Share on Twitter Share on Facebook