https://habr.com/ru/company/mipt/blog/496154/- Блог компании Московский физико-технический институт (МФТИ)
- Python
- Машинное обучение
- Искусственный интеллект
- Natural Language Processing
Сегодня мы все чаще используем приложения для обмена мгновенными сообщениями (Facebook Messenger, WhatsApp, Telegram и т. д.) и устройства в виде голосовых помощников (Amazon Echo и Google Home и т. д.), помогающих получать моментальный ответ на запрос. Поэтому современные компании закладывают значительный бюджет в разработку искусственных помощников, чтобы предоставлять своим пользователям наилучший клиентский сервис, когда это необходимо. В этой статье мы расскажем, как использовали технологию искусственного интеллекта
DeepPavlov для расширения возможностей обслуживания клиентов компании
Интерсвязь.
В современном мире одним из решающих факторов для работы и процветания компании становятся прочные доверительные отношения с клиентами. Эффективное и качественное обслуживание клиентов является ключевой задачей, позволяющей анализировать клиентский опыт и улучшать его. Желание сделать работу с клиентами более отзывчивой, интеллектуальной и универсальной является областью равного внимания как для руководителей, ИТ-директоров, так и для директоров по маркетингу и пользовательскому опыту по всему миру.
В то время как существует широкий выбор готовых продуктов, которые позволяют создавать сервисы, подобные искусственным помощникам, некоторые компании должны идти глубже и создавать свои собственные решения для улучшения их действующих систем поддержки клиентов. Например, справочные службы, информационные панели, веб и мобильные приложения для клиентов с интегрированным интерфейсом чата.
Одной из таких компаний является «Интерсвязь», российский интернет-провайдер с 1,5 млн активных пользователей. Для «Интерсвязи» сделать службы поддержки более интеллектуальными и сократить расходы на них, не жертвуя качеством обслуживания – задача нетривиальная. Чтобы решить эту проблему, компания стала использовать технологии разговорного интеллекта от DeepPavlov. В результате улучшилась система поддержки за счет внедрения интеллектуального помощника, который стал общаться с пользователями, решать вопросы технической поддержки и обрабатывать новые заявки.
Как итог:
- разработанная система сократила среднее время консультации и ослабила нагрузку на сотрудников колл-центра, в результате они могли заняться более сложными запросами;
- 20% всех запросов теперь решаются без участия сотрудников колл-центра;
- разработанное решение достигло 85% точности понимания естественного языка в рамках заложенных в систему сценариев.
О компании «Интерсвязь»
«Интерсвязь» — российская телекоммуникационная компания, которая имеет 1,5 млн пользователей в 20 городах по всей России. Компания предлагает своим клиентам подключение к Интернету, а также сетевое оборудование и устройства. Служба поддержки клиентов обрабатывает более 100 тыс. обращений в чаты и голосовые каналы ежемесячно. Клиенты также обращаются в службу поддержки через предоставленное компанией приложение.
Учитывая характер бизнеса интернет-провайдера, «Интерсвязь» имеет относительно большую службу поддержки, которая обеспечивает быстрое реагирование и обработку на запросы клиентов. В свою очередь компания решила использовать инструменты NLP (обработки естественного языка), чтобы сократить расходы на техническую поддержку и, в то же время, повысить качество самообслуживания, предоставив своим клиентам интеллектуального помощника — чат-бота, ориентированного на взаимодействие с клиентами.
Много слышал про Чат-ботов, но что это?
Для чего нужен чатбот?
Чат-бот — это решение на основе искусственного интеллекта (ИИ), которое общается с людьми через интерфейс живого чата. Чат-бот анализирует каждый запрос клиента, сопоставляет его с известными сценариями и, находя правильный, дает быстрый ответ. В то время как некоторые чат-боты используют сравнительно примитивное сопоставление фраз, используя технологии, такие как регулярные выражения, более продвинутые полагаются на технологии машинного обучения (ML) для лучшего понимания вопросов клиентов.
Как работают чат-боты?
С точки зрения конечного пользователя, после того как проблема или вопрос отправлен в компанию, по телефону или в чате, компания дает ответ; тогда этот диалог между пользователем и компанией ориентирован на решение потребностей конечного пользователя.
С технической точки зрения чат-бот является целенаправленной диалоговой системой, которая анализирует запрос пользователя, чтобы определить конечную цель пользователя (например, решить технические проблемы, купить продукт или получить рекомендации по обслуживанию) и обработать его.
Роль чат-ботов в сфере обслуживании клиентов
Чат-боты очень эффективны с точки зрения удовлетворения и вовлеченности клиентов. Автоматизированное обслуживание клиентов обеспечивает постоянную 24/7 поддержку для быстрого разрешения запросов по всем каналам связи. Мгновенное обслуживание имеет решающее значение для успеха организации, а его автоматизация дает преимущество в персонализации связи между компанией и ее клиентами.
Дополнительной пользой для компаний является снижение эксплуатационных расходов колл-центров. Предоставляя своим клиентам услуги поддержки пользователей на основе чата, компания получает максимальную выгоду: увеличивая свои доходы за счет удержания клиентов и уменьшая затраты на колл-центр.
Построение чат-бота в Интерсвязи
Основные каналы связи
У «Интерсвязь» есть два типа пользователей, внутренние и внешние, которые используют следующие механизмы для связи с компанией:
Клиенты используют:
- Мобильное приложение
- Веб и мобильный чат
Сотрудники службы поддержки используют:
- Систему техподдержки
- Системы мониторинга
Когда пользователь отправляет запрос по любому из указанных выше каналов, он преобразуется в текстовую форму, а затем отправляется в диалоговую систему чат-бота, которая затем пытается сопоставить его с одним из известных намерений, таким образом идентифицируя цель конечного пользователя.
От запроса к намерению
Для правильного анализа и определения намерения конечного пользователя чат-бот «Интерсвязи» использует следующие алгоритмы машинного обучения:
- нормализация текста;
- морфологический анализ;
- семантическое сходство;
- классификация намерений;
- ранжирование;
- распознавание именованных сущностей;
- заполнение слотов.
Затем чат-бот преобразует идентифицированное намерение в вызов внутренних служб — базы данных или другие информационные системы. Получив результат, диалоговая система готовит ответ на естественном языке. В случае же, если исходный запрос пользователя не имеет достаточной информации, чат-бот запускает уточняющий диалог, чтобы собрать все недостающие параметры для обработки запроса.
Готовые ML-модели
В библиотеке с открытым исходным кодом DeepPavlov есть бесплатное и простое в использовании решение для построения диалоговых систем. DeepPavlov поставляется с несколькими предобученными компонентами на базе TensorFlow и Keras для решения конкретных задач, а также предлагает инструменты для тонкой донастройки моделей.
Команда разработчиков «Интерсвязи» использовала следующие модели для создания собственного решения, работающие с русским языком:
*Попробовать эти и другие модели можно в демо версии.
Мощная комбинация этих моделей позволяет чат-боту определить тему запроса клиента, а затем быстро ответить на часто задаваемый вопрос или решить проблему (например, про ежемесячные расходы, почему не работает интернет-соединение и т.д.). Анализ настроений позволяет чат-боту распознавать, требуется ли дополнительное внимание со стороны операторов службы поддержки компании для данного пользователя.
Даже с предобученными моделями из DeepPavlov «Интерсвязи» удалось увеличить количество закрытых без участия человека заявок с 20% до 40%.
Диалоговый менеджер
Разработчики «Интерсвязи» создали решение, полностью покрывающее их запросы, используя инструменты тонкой настройки и способность библиотеки предоставлять свои модели в виде контейнеров (Docker):
Библиотека DeepPavlov позволила не только просто развернуть решение, но и стала очень удобным инструментом для запуска стандартных A/B-тестов для определения наилучших моделей нужных компании сценариев взаимодействия бота с пользователем.
Основное преимущество использования библиотеки DeepPavlov в качестве диалогового менеджера — декларативный подход к определению, какие модели следует использовать и в каком порядке, в конфигурационных файлах. Этот подход позволил компании не только определить, какие компоненты требуются для запуска чат-бота, но и отследить зависимости, а также предоставить пути для загрузки отсутствующих обученных моделей.
Операционная ML Инфраструктура
Помимо библиотеки DeepPavlov, компания использовала следующие вспомогательные механизмы для формирования и управления своей ML-инфраструктурой:
- DVC — набор инструментов, созданный для совместного использования и воспроизведения моделей; используются для хранения и создания версий больших обучающих и промежуточных наборов данных,
- MLFlow — платформа с открытым исходным кодом, используемая для управления жизненным циклом ML-моделей; используется для отслеживания экспериментов и хранения артефактов.
Эти технологии в сочетании с полным набором инструментов для обучения и развертывания моделей DeepPavlov позволили легко воспроизводить и повторно использовать успешные ML-модели.
An end-to-end решение для построения чатбота
Для создания чат-бота с использованием ML-моделей требуется несколько ключевых компонентов:
- формирование датасета;
- обучение моделей;
- управление версиями моделей;
- развертывание модели;
- платформа для проведения A/B экспериментов, адаптированная для ML-моделей;
- Dialog Manager с возможностью гибкого запуска различных моделей в соответствии с требованиями A/B-тестирования;
- понимание намерения.
Создание датасета и управление версиями ML-моделей покрываются с помощью готовых решений в виде библиотек с открытым исходным кодом, таких как DVC и ML Flow. Библиотека DeepPavlov предоставляет компаниям такие возможности, начиная с обучения модели и заканчивая пониманием намерений и настраиваемым диалогом для A/B-тестирования через Dialog Manager.
Таким образом полный процесс обновления существующих моделей был сокращен с нескольких месяцев до пары дней. В результаты инженеры стали больше времени уделять действительно сложным задачам: анализу, проверке гипотез и исследованиям.
Следующим шагом развития разработанной системы станет дальнейшая автоматизация взаимодействия с клиентами за счет расширения числа охватываемых сценариев, улучшение ответов интеллектуального помощника, а также намерений, которые чат-бот сможет обрабатывать без участия оператора.
Заключение
В то время как первые чат-боты использовали комбинацию простых условных выражений и сопоставления текста, то уже сегодня применяются современные алгоритмы машинного обучения, которые способны понимать и общаться с человеком на естественном языке. Чат-боты уже не просто будущий тренд в обслуживании клиентов; они уже здесь, и применяются в реальных компаниях для решения конкретных задач.
В следующий раз мы поделимся техническим описанием данного кейса. А пока начните изучать DeepPavlov и не забывайте, что у нас есть
форум – задавайте свои вопросы относительно библиотеки и моделей. Спасибо за внимание!
Дополнительно
На недавней
встрече пользователей и разработчиков библиотеки DeepPavlov, которая прошла 28 февраля, представители компании «Интерсвязь» Дмитрий Ботов и Станислав Питуганов поделились, как применяются технологий NLP в контакт-центре провайдера. Посмотреть видео можно
здесь.